update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- sem_eval_2018_task_1
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: bert-finetuned-sem_eval-english
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: sem_eval_2018_task_1
|
18 |
+
type: sem_eval_2018_task_1
|
19 |
+
config: subtask5.english
|
20 |
+
split: train
|
21 |
+
args: subtask5.english
|
22 |
+
metrics:
|
23 |
+
- name: F1
|
24 |
+
type: f1
|
25 |
+
value: 0.7113731269958242
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.28103837471783294
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# bert-finetuned-sem_eval-english
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the sem_eval_2018_task_1 dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.3131
|
39 |
+
- F1: 0.7114
|
40 |
+
- Roc Auc: 0.8046
|
41 |
+
- Accuracy: 0.2810
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Intended uses & limitations
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training and evaluation data
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training procedure
|
56 |
+
|
57 |
+
### Training hyperparameters
|
58 |
+
|
59 |
+
The following hyperparameters were used during training:
|
60 |
+
- learning_rate: 2e-05
|
61 |
+
- train_batch_size: 8
|
62 |
+
- eval_batch_size: 8
|
63 |
+
- seed: 42
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 5
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
72 |
+
| 0.4067 | 1.0 | 855 | 0.3205 | 0.6756 | 0.7766 | 0.2709 |
|
73 |
+
| 0.2828 | 2.0 | 1710 | 0.3062 | 0.7058 | 0.7973 | 0.3014 |
|
74 |
+
| 0.239 | 3.0 | 2565 | 0.3122 | 0.7100 | 0.8038 | 0.2810 |
|
75 |
+
| 0.2145 | 4.0 | 3420 | 0.3131 | 0.7114 | 0.8046 | 0.2810 |
|
76 |
+
| 0.1888 | 5.0 | 4275 | 0.3167 | 0.7096 | 0.8022 | 0.2844 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.21.1
|
82 |
+
- Pytorch 1.12.0+cu113
|
83 |
+
- Datasets 2.4.0
|
84 |
+
- Tokenizers 0.12.1
|