File size: 3,854 Bytes
3f136f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
base_model: csebuetnlp/banglabert
tags:
- generated_from_trainer
model-index:
- name: Banglabert_nwp_finetuning_test1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Banglabert_nwp_finetuning_test1

This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co./csebuetnlp/banglabert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1145

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| No log        | 1.0   | 403   | 7.4663          |
| 7.9712        | 2.0   | 806   | 6.5917          |
| 6.8071        | 3.0   | 1209  | 6.0256          |
| 6.0374        | 4.0   | 1612  | 5.6658          |
| 5.6471        | 5.0   | 2015  | 5.4585          |
| 5.6471        | 6.0   | 2418  | 5.2872          |
| 5.3912        | 7.0   | 2821  | 5.2068          |
| 5.1951        | 8.0   | 3224  | 4.9943          |
| 4.9863        | 9.0   | 3627  | 4.9361          |
| 4.8637        | 10.0  | 4030  | 5.0372          |
| 4.8637        | 11.0  | 4433  | 4.8487          |
| 4.7391        | 12.0  | 4836  | 4.7716          |
| 4.6406        | 13.0  | 5239  | 4.6486          |
| 4.5531        | 14.0  | 5642  | 4.6206          |
| 4.438         | 15.0  | 6045  | 4.5695          |
| 4.438         | 16.0  | 6448  | 4.5419          |
| 4.349         | 17.0  | 6851  | 4.5311          |
| 4.2898        | 18.0  | 7254  | 4.5808          |
| 4.215         | 19.0  | 7657  | 4.4420          |
| 4.1477        | 20.0  | 8060  | 4.4000          |
| 4.1477        | 21.0  | 8463  | 4.4062          |
| 4.0975        | 22.0  | 8866  | 4.4725          |
| 4.0181        | 23.0  | 9269  | 4.3565          |
| 3.9865        | 24.0  | 9672  | 4.2207          |
| 3.9196        | 25.0  | 10075 | 4.2460          |
| 3.9196        | 26.0  | 10478 | 4.2876          |
| 3.9069        | 27.0  | 10881 | 4.2645          |
| 3.8349        | 28.0  | 11284 | 4.2974          |
| 3.7824        | 29.0  | 11687 | 4.3730          |
| 3.736         | 30.0  | 12090 | 4.2604          |
| 3.736         | 31.0  | 12493 | 4.3195          |
| 3.7202        | 32.0  | 12896 | 4.1342          |
| 3.6897        | 33.0  | 13299 | 4.3159          |
| 3.6388        | 34.0  | 13702 | 4.1019          |
| 3.6448        | 35.0  | 14105 | 4.1839          |
| 3.6099        | 36.0  | 14508 | 4.1900          |
| 3.6099        | 37.0  | 14911 | 4.0979          |
| 3.5708        | 38.0  | 15314 | 4.1737          |
| 3.5502        | 39.0  | 15717 | 4.1915          |
| 3.5159        | 40.0  | 16120 | 4.1158          |
| 3.5086        | 41.0  | 16523 | 4.0181          |
| 3.5086        | 42.0  | 16926 | 4.1328          |
| 3.4808        | 43.0  | 17329 | 4.0247          |
| 3.4733        | 44.0  | 17732 | 4.1688          |
| 3.4681        | 45.0  | 18135 | 4.1177          |
| 3.4689        | 46.0  | 18538 | 4.1093          |
| 3.4689        | 47.0  | 18941 | 4.1418          |
| 3.434         | 48.0  | 19344 | 4.0152          |
| 3.4513        | 49.0  | 19747 | 4.1412          |
| 3.4158        | 50.0  | 20150 | 4.1036          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3