--- license: apache-2.0 datasets: - Set5 - Div2K language: - en tags: - RyzenAI - PAN - Pytorch - Super Resolution - Vision pipeline_tag: image-to-image --- ## Model description PAN is an lightwight image super-resolution method with pixel pttention. It was introduced in the paper [Efficient Image Super-Resolution Using Pixel Attention](https://arxiv.org/abs/2010.01073) by Hengyuan Zhao et al. and first released in [this repository](https://github.com/zhaohengyuan1/PAN). We changed the negative slope of the leaky ReLU of the original model and replaced the sigmoid activation with hard sigmoid to make the model compatible with [AMD Ryzen AI](https://onnxruntime.ai/docs/execution-providers/Vitis-AI-ExecutionProvider.html). We loaded the published model parameters and fine-tuned them on the DIV2K dataset. ## Intended uses & limitations You can use the raw model for super resolution. See the [model hub](https://huggingface.co./models?search=amd/pan) to look for all available PAN models. ## How to use ### Installation Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model. ```bash pip install -r requirements.txt ``` ### Data Preparation (optional: for accuracy evaluation) 1. Download the benchmark(https://cv.snu.ac.kr/research/EDSR/benchmark.tar) dataset. 3. Unzip the dataset and put it under the project folder. Organize the dataset directory as follows: ```Plain PAN └── dataset └── benchmark ├── Set5 ├── HR | ├── baby.png | ├── ... └── LR_bicubic └──X2 ├──babyx2.png ├── ... ├── Set14 ├── ... ``` ### Test & Evaluation - Code snippet from [`infer_onnx.py`](infer_onnx.py) on how to use ```python parser = argparse.ArgumentParser(description='PAN SR') parser.add_argument('--onnx_path', type=str, default='PAN_int8.onnx', help='Onnx path') parser.add_argument('--image_path', type=str, default='test_data/test.png', help='Path to your input image.') parser.add_argument('--output_path', type=str, default='test_data/sr.png', help='Path to your output image.') parser.add_argument('--provider_config', type=str, default="vaip_config.json", help="Path of the config file for seting provider_options.") parser.add_argument('--ipu', action='store_true', help='Use Ipu for interence.') args = parser.parse_args() onnx_file_name = args.onnx_path image_path = args.image_path output_path = args.output_path if args.ipu: providers = ["VitisAIExecutionProvider"] provider_options = [{"config_file": args.provider_config}] else: providers = ['CPUExecutionProvider'] provider_options = None ort_session = onnxruntime.InferenceSession(onnx_file_name, providers=providers, provider_options=provider_options) lr = cv2.imread(image_path)[np.newaxis,:,:,:].transpose((0,3,1,2)).astype(np.float32) sr = tiling_inference(ort_session, lr, 8, (56, 56)) sr = np.clip(sr, 0, 255) sr = sr.squeeze().transpose((1,2,0)).astype(np.uint8) sr = cv2.imwrite(output_path, sr) ``` - Run inference for a single image ```python python infer_onnx.py --onnx_path PAN_int8.onnx --image_path /Path/To/Your/Image --ipu --provider_config Path\To\vaip_config.json ``` - Test accuracy of the quantized model ```python python eval_onnx.py --onnx_path PAN_int8.onnx --data_test Set5 --ipu --provider_config Path\To\vaip_config.json ``` Note: **vaip_config.json** is located at the setup package of Ryzen AI (refer to [Installation](https://huggingface.co./amd/yolox-s#installation)) ### Performance | Method | Scale | Flops | Set5 | |------------|-------|-------|--------------| |PAN (float) |X2 |141G |38.00 / 0.961| |PAN_amd (float) |X2 |141G |37.859 / 0.960| |PAN_amd (int8) |X2 |141G |37.18 / 0.952| - Note: the Flops is calculated with the output resolution is 360x640 ```bibtex @inproceedings{zhao2020efficient, title={Efficient image super-resolution using pixel attention}, author={Zhao, Hengyuan and Kong, Xiangtao and He, Jingwen and Qiao, Yu and Dong, Chao}, booktitle={European Conference on Computer Vision}, pages={56--72}, year={2020}, organization={Springer} } ```