File size: 3,507 Bytes
5564c63 75b4b9f 2c67e12 75b4b9f 2c67e12 75b4b9f ece08f7 2c67e12 ece08f7 75b4b9f ece08f7 2c67e12 75b4b9f 2c67e12 75b4b9f 2c67e12 a91db26 75b4b9f 2c67e12 75b4b9f 2c67e12 75b4b9f 2c67e12 75b4b9f a91db26 2c67e12 a91db26 75b4b9f 2c67e12 75b4b9f 2c67e12 75b4b9f a91db26 75b4b9f 5564c63 2c67e12 5564c63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: gpl-3.0
datasets:
- nkp37/OpenVid-1M
- TempoFunk/webvid-10M
base_model:
- VideoCrafter/VideoCrafter2
pipeline_tag: text-to-video
---
# Advanced text-to-video Diffusion Models
⚡️ This repository provides training recipes for the AMD efficient text-to-video models, which are designed for high performance and efficiency. The training process includes two key steps:
* Distillation and Pruning: We distill and prune the popular text-to-video model [VideoCrafter2](https://github.com/AILab-CVC/VideoCrafter), reducing the parameters to a compact 945M while maintaining competitive performance.
* Optimization with T2V-Turbo: We apply the [T2V-Turbo](https://github.com/Ji4chenLi/t2v-turbo) method on the distilled model to reduce inference steps and further enhance model quality.
This implementation is released to promote further research and innovation in the field of efficient text-to-video generation, optimized for AMD Instinct accelerators.

**8-Steps Results**
<style>
table {
width: auto;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
text-align: center;
padding: 5px;
vertical-align: middle;
width: 512px; /* 每列宽度固定 */
}
tr.text-row {
height: 30px; /* 文字行高度 */
}
tr.image-row {
height: 320px; /* 图片行高度 */
}
img {
width: 512px;
height: 320px;
object-fit: cover;
}
</style>
<table>
<tr class="text-row">
<th>A 3D model of a 1800s victorian house.</th>
<th>A cute happy Corgi playing in park, sunset, animated style.gif</th>
<th>A cute raccoon playing guitar in the beach.</th>
<th>A cute raccoon playing guitar in the forest.</th>
</tr>
<tr class="image-row">
<td><img src="GIFs/A 3D model of a 1800s victorian house..gif"></td>
<td><img src="GIFs/A cute happy Corgi playing in park, sunset, animated style.gif"></td>
<td><img src="GIFs/A cute raccoon playing guitar in the beach.gif"></td>
<td><img src="GIFs/A cute raccoon playing guitar in the forest.gif"></td>
</tr>
<tr class="text-row">
<th>A quiet beach at dawn and the waves gently lapping.</th>
<th>A cute teddy bear, dressed in a red silk outfit, stands in a vibrant street, Chinese New Year.</th>
<th>A sandcastle being eroded by the incoming tide.</th>
<th>An astronaut flying in space, in cyberpunk style.</th>
</tr>
<tr class="image-row">
<td><img src="GIFs/A_quiet_beach_at_dawn_and_the_waves_gently_lapping.gif"></td>
<td><img src="GIFs/A cute teddy bear, dressed in a red silk outfit, stands in a vibrant street, chinese new year..gif"></td>
<td><img src="GIFs/A_sandcastle_being_eroded_by_the_incoming_tide.gif"></td>
<td><img src="GIFs/An astronaut flying in space, in cyberpunk style.gif"></td>
</tr>
<tr class="text-row">
<th>A cat DJ at a party.</th>
<th>A cute happy Corgi playing in park, sunset, pixel.</th>
<th>A drone flying over a snowy forest.</th>
<th>A ghost ship navigating through a sea under a moon.</th>
</tr>
<tr class="image-row">
<td><img src="GIFs/A_cat_DJ_at_a_party.gif"></td>
<td><img src="GIFs/A_cute_happy_Corgi_playing_in_park,_sunset,_pixel_.gif"></td>
<td><img src="GIFs/a_drone_flying_over_a_snowy_forest.gif"></td>
<td><img src="GIFs/A_ghost_ship_navigating_through_a_sea_under_a_moon.gif"></td>
</tr>
</table>
# License
Copyright (c) 2024 Advanced Micro Devices, Inc. All Rights Reserved. |