Quantization script
Browse files- minimal_script.py +274 -0
- requirements.txt +10 -0
minimal_script.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
|
3 |
+
SPDX-License-Identifier: MIT
|
4 |
+
"""
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
import copy
|
8 |
+
from datetime import datetime
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
import time
|
12 |
+
|
13 |
+
from brevitas.core.zero_point import ParameterFromStatsFromParameterZeroPoint
|
14 |
+
from brevitas.quant.experimental.float_quant_fnuz import Fp8e4m3FNUZActPerTensorFloat
|
15 |
+
from brevitas.quant.scaled_int import Int8ActPerTensorFloat
|
16 |
+
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerChannelFloat
|
17 |
+
from brevitas_examples.common.generative.nn import LoRACompatibleQuantConv2d, LoRACompatibleQuantLinear
|
18 |
+
from diffusers import DiffusionPipeline
|
19 |
+
from diffusers.models.attention_processor import Attention
|
20 |
+
from diffusers.models.attention_processor import AttnProcessor
|
21 |
+
import pandas as pd
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from tqdm import tqdm
|
25 |
+
import brevitas.nn as qnn
|
26 |
+
|
27 |
+
from brevitas.graph.base import ModuleToModuleByClass
|
28 |
+
from brevitas.graph.calibrate import bias_correction_mode
|
29 |
+
from brevitas.graph.calibrate import calibration_mode
|
30 |
+
from brevitas.graph.equalize import activation_equalization_mode
|
31 |
+
from brevitas.graph.quantize import layerwise_quantize
|
32 |
+
from brevitas.inject.enum import StatsOp
|
33 |
+
from brevitas.nn.equalized_layer import EqualizedModule
|
34 |
+
from brevitas.utils.torch_utils import KwargsForwardHook
|
35 |
+
|
36 |
+
from brevitas_examples.common.parse_utils import add_bool_arg
|
37 |
+
from brevitas_examples.stable_diffusion.sd_quant.export import export_quant_params
|
38 |
+
from brevitas_examples.stable_diffusion.sd_quant.nn import QuantAttention
|
39 |
+
import brevitas.config as config
|
40 |
+
|
41 |
+
TEST_SEED = 123456
|
42 |
+
torch.manual_seed(TEST_SEED)
|
43 |
+
|
44 |
+
class WeightQuant(ShiftedUint8WeightPerChannelFloat):
|
45 |
+
narrow_range = False
|
46 |
+
scaling_min_val = 1e-4
|
47 |
+
quantize_zero_point = True
|
48 |
+
scaling_impl_type = 'parameter_from_stats'
|
49 |
+
zero_point_impl = ParameterFromStatsFromParameterZeroPoint
|
50 |
+
|
51 |
+
class InputQuant(Int8ActPerTensorFloat):
|
52 |
+
scaling_stats_op = StatsOp.MAX
|
53 |
+
|
54 |
+
class OutputQuant(Fp8e4m3FNUZActPerTensorFloat):
|
55 |
+
scaling_stats_op = StatsOp.MAX
|
56 |
+
|
57 |
+
NEGATIVE_PROMPTS = ["normal quality, low quality, worst quality, low res, blurry, nsfw, nude"]
|
58 |
+
|
59 |
+
def load_calib_prompts(calib_data_path, sep="\t"):
|
60 |
+
df = pd.read_csv(calib_data_path, sep=sep)
|
61 |
+
lst = df["caption"].tolist()
|
62 |
+
return lst
|
63 |
+
|
64 |
+
def run_val_inference(
|
65 |
+
pipe,
|
66 |
+
prompts,
|
67 |
+
guidance_scale,
|
68 |
+
total_steps,
|
69 |
+
test_latents=None):
|
70 |
+
with torch.no_grad():
|
71 |
+
for prompt in tqdm(prompts):
|
72 |
+
# We don't want to generate any image, so we return only the latent encoding pre VAE
|
73 |
+
pipe(
|
74 |
+
prompt,
|
75 |
+
negative_prompt=NEGATIVE_PROMPTS[0],
|
76 |
+
latents=test_latents,
|
77 |
+
output_type='latent',
|
78 |
+
guidance_scale=guidance_scale,
|
79 |
+
num_inference_steps=total_steps)
|
80 |
+
|
81 |
+
|
82 |
+
def main(args):
|
83 |
+
|
84 |
+
dtype = getattr(torch, args.dtype)
|
85 |
+
|
86 |
+
calibration_prompts = load_calib_prompts(args.calibration_prompt_path)
|
87 |
+
latents = torch.load(args.path_to_latents).to(torch.float16)
|
88 |
+
|
89 |
+
# Create output dir. Move to tmp if None
|
90 |
+
ts = datetime.fromtimestamp(time.time())
|
91 |
+
str_ts = ts.strftime("%Y%m%d_%H%M%S")
|
92 |
+
output_dir = os.path.join(args.output_path, f'{str_ts}')
|
93 |
+
os.mkdir(output_dir)
|
94 |
+
|
95 |
+
# Dump args to json
|
96 |
+
with open(os.path.join(output_dir, 'args.json'), 'w') as fp:
|
97 |
+
json.dump(vars(args), fp)
|
98 |
+
|
99 |
+
# Load model from float checkpoint
|
100 |
+
print(f"Loading model from {args.model}...")
|
101 |
+
pipe = DiffusionPipeline.from_pretrained(args.model, torch_dtype=dtype)
|
102 |
+
print(f"Model loaded from {args.model}.")
|
103 |
+
|
104 |
+
# Move model to target device
|
105 |
+
print(f"Moving model to {args.device}...")
|
106 |
+
pipe = pipe.to(args.device)
|
107 |
+
|
108 |
+
# Enable attention slicing
|
109 |
+
if args.attention_slicing:
|
110 |
+
pipe.enable_attention_slicing()
|
111 |
+
|
112 |
+
# Extract list of layers to avoid
|
113 |
+
blacklist = []
|
114 |
+
for name, _ in pipe.unet.named_modules():
|
115 |
+
if 'time_emb' in name:
|
116 |
+
blacklist.append(name.split('.')[-1])
|
117 |
+
print(f"Blacklisted layers: {blacklist}")
|
118 |
+
|
119 |
+
# Make sure there all LoRA layers are fused first, otherwise raise an error
|
120 |
+
for m in pipe.unet.modules():
|
121 |
+
if hasattr(m, 'lora_layer') and m.lora_layer is not None:
|
122 |
+
raise RuntimeError("LoRA layers should be fused in before calling into quantization.")
|
123 |
+
|
124 |
+
pipe.set_progress_bar_config(disable=True)
|
125 |
+
with activation_equalization_mode(
|
126 |
+
pipe.unet,
|
127 |
+
alpha=args.act_eq_alpha,
|
128 |
+
layerwise=True,
|
129 |
+
blacklist_layers=blacklist if args.exclude_blacklist_act_eq else None,
|
130 |
+
add_mul_node=True):
|
131 |
+
# Workaround to expose `in_features` attribute from the Hook Wrapper
|
132 |
+
for m in pipe.unet.modules():
|
133 |
+
if isinstance(m, KwargsForwardHook) and hasattr(m.module, 'in_features'):
|
134 |
+
m.in_features = m.module.in_features
|
135 |
+
total_steps = args.calibration_steps
|
136 |
+
run_val_inference(
|
137 |
+
pipe,
|
138 |
+
calibration_prompts,
|
139 |
+
total_steps=total_steps,
|
140 |
+
test_latents=latents,
|
141 |
+
guidance_scale=args.guidance_scale)
|
142 |
+
|
143 |
+
# Workaround to expose `in_features` attribute from the EqualizedModule Wrapper
|
144 |
+
for m in pipe.unet.modules():
|
145 |
+
if isinstance(m, EqualizedModule) and hasattr(m.layer, 'in_features'):
|
146 |
+
m.in_features = m.layer.in_features
|
147 |
+
|
148 |
+
|
149 |
+
quant_layer_kwargs = {
|
150 |
+
'input_quant': InputQuant, 'weight_quant': WeightQuant, 'dtype': dtype, 'device': args.device, 'input_dtype': dtype, 'input_device': args.device}
|
151 |
+
quant_linear_kwargs = copy.deepcopy(quant_layer_kwargs)
|
152 |
+
if args.quantize_sdp:
|
153 |
+
output_quant = OutputQuant
|
154 |
+
rewriter = ModuleToModuleByClass(
|
155 |
+
Attention,
|
156 |
+
QuantAttention,
|
157 |
+
softmax_output_quant=output_quant,
|
158 |
+
query_dim=lambda module: module.to_q.in_features,
|
159 |
+
dim_head=lambda module: int(1 / (module.scale ** 2)),
|
160 |
+
processor=AttnProcessor(),
|
161 |
+
is_equalized=True)
|
162 |
+
config.IGNORE_MISSING_KEYS = True
|
163 |
+
pipe.unet = rewriter.apply(pipe.unet)
|
164 |
+
config.IGNORE_MISSING_KEYS = False
|
165 |
+
pipe.unet = pipe.unet.to(args.device)
|
166 |
+
pipe.unet = pipe.unet.to(dtype)
|
167 |
+
# quant_kwargs = layer_map[torch.nn.Linear][1]
|
168 |
+
what_to_quantize = ['to_q', 'to_k', 'to_v']
|
169 |
+
quant_linear_kwargs['output_quant'] = lambda module, name: output_quant if any(ending in name for ending in what_to_quantize) else None
|
170 |
+
quant_linear_kwargs['output_dtype'] = dtype
|
171 |
+
quant_linear_kwargs['output_device'] = args.device
|
172 |
+
|
173 |
+
layer_map = {
|
174 |
+
nn.Linear: (qnn.QuantLinear, quant_linear_kwargs),
|
175 |
+
nn.Conv2d: (qnn.QuantConv2d, quant_layer_kwargs),
|
176 |
+
'diffusers.models.lora.LoRACompatibleLinear':
|
177 |
+
(LoRACompatibleQuantLinear, quant_layer_kwargs),
|
178 |
+
'diffusers.models.lora.LoRACompatibleConv': (LoRACompatibleQuantConv2d, quant_layer_kwargs)}
|
179 |
+
|
180 |
+
pipe.unet = layerwise_quantize(
|
181 |
+
model=pipe.unet, compute_layer_map=layer_map, name_blacklist=blacklist)
|
182 |
+
print("Model quantization applied.")
|
183 |
+
|
184 |
+
pipe.set_progress_bar_config(disable=True)
|
185 |
+
|
186 |
+
print("Applying activation calibration")
|
187 |
+
with torch.no_grad(), calibration_mode(pipe.unet):
|
188 |
+
run_val_inference(
|
189 |
+
pipe,
|
190 |
+
calibration_prompts,
|
191 |
+
total_steps=args.calibration_steps,
|
192 |
+
test_latents=latents,
|
193 |
+
guidance_scale=args.guidance_scale)
|
194 |
+
|
195 |
+
print("Applying bias correction")
|
196 |
+
with torch.no_grad(), bias_correction_mode(pipe.unet):
|
197 |
+
run_val_inference(
|
198 |
+
pipe,
|
199 |
+
calibration_prompts,
|
200 |
+
total_steps=args.calibration_steps,
|
201 |
+
test_latents=latents,
|
202 |
+
guidance_scale=args.guidance_scale)
|
203 |
+
|
204 |
+
if args.checkpoint_name is not None:
|
205 |
+
torch.save(pipe.unet.state_dict(), os.path.join(output_dir, args.checkpoint_name))
|
206 |
+
|
207 |
+
if args.export_target:
|
208 |
+
export_quant_params(pipe, output_dir)
|
209 |
+
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
parser = argparse.ArgumentParser(description='Stable Diffusion quantization')
|
213 |
+
parser.add_argument(
|
214 |
+
'-m',
|
215 |
+
'--model',
|
216 |
+
type=str,
|
217 |
+
default=None,
|
218 |
+
help='Path or name of the model.')
|
219 |
+
parser.add_argument(
|
220 |
+
'-d', '--device', type=str, default='cuda:0', help='Target device for quantized model.')
|
221 |
+
parser.add_argument(
|
222 |
+
'--calibration-prompt-path', type=str, default=None, help='Path to calibration prompt')
|
223 |
+
parser.add_argument(
|
224 |
+
'--checkpoint-name',
|
225 |
+
type=str,
|
226 |
+
default=None,
|
227 |
+
help=
|
228 |
+
'Name to use to store the checkpoint in the output dir. If not provided, no checkpoint is saved.'
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
'--path-to-latents',
|
232 |
+
type=str,
|
233 |
+
default=None,
|
234 |
+
help=
|
235 |
+
'Load pre-defined latents. If not provided, they are generated based on an internal seed.')
|
236 |
+
|
237 |
+
parser.add_argument('--guidance-scale', type=float, default=8., help='Guidance scale.')
|
238 |
+
parser.add_argument(
|
239 |
+
'--calibration-steps', type=float, default=8, help='Steps used during calibration')
|
240 |
+
add_bool_arg(
|
241 |
+
parser,
|
242 |
+
'output-path',
|
243 |
+
str_true=True,
|
244 |
+
default='.',
|
245 |
+
help='Path where to generate output folder.')
|
246 |
+
parser.add_argument(
|
247 |
+
'--dtype',
|
248 |
+
default='float16',
|
249 |
+
choices=['float32', 'float16', 'bfloat16'],
|
250 |
+
help='Model Dtype, choices are float32, float16, bfloat16. Default: float16')
|
251 |
+
add_bool_arg(
|
252 |
+
parser,
|
253 |
+
'attention-slicing',
|
254 |
+
default=False,
|
255 |
+
help='Enable attention slicing. Default: Disabled')
|
256 |
+
add_bool_arg(
|
257 |
+
parser,
|
258 |
+
'export-target',
|
259 |
+
default=True,
|
260 |
+
help='Export flow.')
|
261 |
+
parser.add_argument(
|
262 |
+
'--act-eq-alpha',
|
263 |
+
type=float,
|
264 |
+
default=0.9,
|
265 |
+
help='Alpha for activation equalization. Default: 0.9')
|
266 |
+
add_bool_arg(parser, 'quantize-sdp', default=False, help='Quantize SDP. Default: Disabled')
|
267 |
+
add_bool_arg(
|
268 |
+
parser,
|
269 |
+
'exclude-blacklist-act-eq',
|
270 |
+
default=False,
|
271 |
+
help='Exclude unquantized layers from activation equalization. Default: Disabled')
|
272 |
+
args = parser.parse_args()
|
273 |
+
print("Args: " + str(vars(args)))
|
274 |
+
main(args)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.23.0
|
2 |
+
diffusers==0.21.2
|
3 |
+
open-clip-torch==2.7.0
|
4 |
+
opencv-python==4.8.1.78
|
5 |
+
pycocotools==2.0.7
|
6 |
+
scipy==1.9.1
|
7 |
+
torchmetrics[image]==1.2.0
|
8 |
+
tqdm
|
9 |
+
transformers==4.33.2
|
10 |
+
brevitas @ git+https://github.com/Xilinx/brevitas@dev
|