--- tags: - generated_from_trainer metrics: - accuracy base_model: DeepPavlov/xlm-roberta-large-en-ru model-index: - name: xlm-roberta-en-ru-emoji-v2 results: [] --- # xlm-roberta-en-ru-emoji-v2 This model is a fine-tuned version of [DeepPavlov/xlm-roberta-large-en-ru](https://huggingface.co./DeepPavlov/xlm-roberta-large-en-ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3356 - Accuracy: 0.3102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 200 | 3.0592 | 0.1204 | | No log | 0.81 | 400 | 2.5356 | 0.2480 | | 2.6294 | 1.21 | 600 | 2.4570 | 0.2569 | | 2.6294 | 1.62 | 800 | 2.3332 | 0.2832 | | 1.9286 | 2.02 | 1000 | 2.3354 | 0.2803 | | 1.9286 | 2.42 | 1200 | 2.3610 | 0.2881 | | 1.9286 | 2.83 | 1400 | 2.3004 | 0.2973 | | 1.7312 | 3.23 | 1600 | 2.3619 | 0.3026 | | 1.7312 | 3.64 | 1800 | 2.3596 | 0.3032 | | 1.5816 | 4.04 | 2000 | 2.2972 | 0.3072 | | 1.5816 | 4.44 | 2200 | 2.3077 | 0.3073 | | 1.5816 | 4.85 | 2400 | 2.3356 | 0.3102 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3