End of training
Browse files- README.md +191 -0
- config.json +285 -0
- config.toml +27 -0
- model.safetensors +3 -0
- preprocessor_config.json +37 -0
- train.ipynb +926 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/resnet-50
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- stanford-dogs
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
model-index:
|
14 |
+
- name: microsoft-resnet-50-batch32-lr0.0005-standford-dogs
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: stanford-dogs
|
21 |
+
type: stanford-dogs
|
22 |
+
config: default
|
23 |
+
split: full
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.8386783284742468
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.8259546998355447
|
32 |
+
- name: Precision
|
33 |
+
type: precision
|
34 |
+
value: 0.8457483127517197
|
35 |
+
- name: Recall
|
36 |
+
type: recall
|
37 |
+
value: 0.8314858626273427
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# microsoft-resnet-50-batch32-lr0.0005-standford-dogs
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the stanford-dogs dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 1.1545
|
48 |
+
- Accuracy: 0.8387
|
49 |
+
- F1: 0.8260
|
50 |
+
- Precision: 0.8457
|
51 |
+
- Recall: 0.8315
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
+
- train_batch_size: 32
|
72 |
+
- eval_batch_size: 32
|
73 |
+
- seed: 42
|
74 |
+
- gradient_accumulation_steps: 4
|
75 |
+
- total_train_batch_size: 128
|
76 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
+
- lr_scheduler_type: linear
|
78 |
+
- training_steps: 1000
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
83 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
84 |
+
| 4.7829 | 0.0777 | 10 | 4.7747 | 0.2119 | 0.1874 | 0.3919 | 0.1982 |
|
85 |
+
| 4.7714 | 0.1553 | 20 | 4.7572 | 0.2038 | 0.1842 | 0.4262 | 0.1836 |
|
86 |
+
| 4.7606 | 0.2330 | 30 | 4.7367 | 0.3586 | 0.3433 | 0.6517 | 0.3307 |
|
87 |
+
| 4.747 | 0.3107 | 40 | 4.7149 | 0.4303 | 0.4272 | 0.7734 | 0.4039 |
|
88 |
+
| 4.7253 | 0.3883 | 50 | 4.6846 | 0.4361 | 0.4678 | 0.7906 | 0.4160 |
|
89 |
+
| 4.7069 | 0.4660 | 60 | 4.6534 | 0.5330 | 0.5397 | 0.8048 | 0.5093 |
|
90 |
+
| 4.6857 | 0.5437 | 70 | 4.6177 | 0.5500 | 0.5511 | 0.7998 | 0.5264 |
|
91 |
+
| 4.6569 | 0.6214 | 80 | 4.5764 | 0.5739 | 0.5800 | 0.8208 | 0.5517 |
|
92 |
+
| 4.6293 | 0.6990 | 90 | 4.5359 | 0.6142 | 0.6149 | 0.8075 | 0.5926 |
|
93 |
+
| 4.5953 | 0.7767 | 100 | 4.4828 | 0.6207 | 0.6233 | 0.8109 | 0.6000 |
|
94 |
+
| 4.5651 | 0.8544 | 110 | 4.4257 | 0.6591 | 0.6585 | 0.8148 | 0.6393 |
|
95 |
+
| 4.5296 | 0.9320 | 120 | 4.3647 | 0.7063 | 0.7012 | 0.8284 | 0.6882 |
|
96 |
+
| 4.4911 | 1.0097 | 130 | 4.2998 | 0.7089 | 0.7074 | 0.8326 | 0.6924 |
|
97 |
+
| 4.4442 | 1.0874 | 140 | 4.2288 | 0.6939 | 0.6890 | 0.8302 | 0.6759 |
|
98 |
+
| 4.3912 | 1.1650 | 150 | 4.1527 | 0.6873 | 0.6863 | 0.8262 | 0.6703 |
|
99 |
+
| 4.3393 | 1.2427 | 160 | 4.0884 | 0.7250 | 0.7127 | 0.8251 | 0.7082 |
|
100 |
+
| 4.3019 | 1.3204 | 170 | 3.9946 | 0.7262 | 0.7152 | 0.8234 | 0.7098 |
|
101 |
+
| 4.2366 | 1.3981 | 180 | 3.9314 | 0.7301 | 0.7177 | 0.8230 | 0.7143 |
|
102 |
+
| 4.1966 | 1.4757 | 190 | 3.8398 | 0.7325 | 0.7196 | 0.8169 | 0.7175 |
|
103 |
+
| 4.1402 | 1.5534 | 200 | 3.7587 | 0.7381 | 0.7217 | 0.8149 | 0.7221 |
|
104 |
+
| 4.0771 | 1.6311 | 210 | 3.6745 | 0.7310 | 0.7149 | 0.8125 | 0.7160 |
|
105 |
+
| 4.0436 | 1.7087 | 220 | 3.5729 | 0.7364 | 0.7189 | 0.8121 | 0.7214 |
|
106 |
+
| 3.9697 | 1.7864 | 230 | 3.5030 | 0.7490 | 0.7339 | 0.8172 | 0.7358 |
|
107 |
+
| 3.9181 | 1.8641 | 240 | 3.4505 | 0.7541 | 0.7379 | 0.8123 | 0.7408 |
|
108 |
+
| 3.8573 | 1.9417 | 250 | 3.3529 | 0.7646 | 0.7453 | 0.8136 | 0.7521 |
|
109 |
+
| 3.8077 | 2.0194 | 260 | 3.2566 | 0.7660 | 0.7482 | 0.8093 | 0.7540 |
|
110 |
+
| 3.7449 | 2.0971 | 270 | 3.1869 | 0.7709 | 0.7510 | 0.8144 | 0.7588 |
|
111 |
+
| 3.682 | 2.1748 | 280 | 3.0898 | 0.7668 | 0.7440 | 0.8097 | 0.7548 |
|
112 |
+
| 3.6461 | 2.2524 | 290 | 3.0377 | 0.7641 | 0.7381 | 0.8100 | 0.7511 |
|
113 |
+
| 3.6004 | 2.3301 | 300 | 2.9001 | 0.7648 | 0.7384 | 0.8061 | 0.7522 |
|
114 |
+
| 3.5478 | 2.4078 | 310 | 2.8623 | 0.7653 | 0.7410 | 0.8060 | 0.7529 |
|
115 |
+
| 3.4971 | 2.4854 | 320 | 2.7961 | 0.7675 | 0.7447 | 0.8068 | 0.7558 |
|
116 |
+
| 3.4446 | 2.5631 | 330 | 2.6960 | 0.7690 | 0.7486 | 0.8128 | 0.7582 |
|
117 |
+
| 3.4093 | 2.6408 | 340 | 2.6480 | 0.7821 | 0.7652 | 0.8151 | 0.7718 |
|
118 |
+
| 3.3994 | 2.7184 | 350 | 2.5330 | 0.7847 | 0.7676 | 0.8156 | 0.7742 |
|
119 |
+
| 3.2963 | 2.7961 | 360 | 2.4866 | 0.7855 | 0.7681 | 0.8154 | 0.7752 |
|
120 |
+
| 3.2615 | 2.8738 | 370 | 2.4344 | 0.7891 | 0.7740 | 0.8172 | 0.7792 |
|
121 |
+
| 3.2024 | 2.9515 | 380 | 2.4011 | 0.7794 | 0.7638 | 0.8126 | 0.7694 |
|
122 |
+
| 3.1641 | 3.0291 | 390 | 2.3039 | 0.7835 | 0.7659 | 0.8100 | 0.7736 |
|
123 |
+
| 3.0719 | 3.1068 | 400 | 2.2471 | 0.7796 | 0.7608 | 0.8072 | 0.7691 |
|
124 |
+
| 3.0808 | 3.1845 | 410 | 2.2130 | 0.7896 | 0.7717 | 0.8137 | 0.7795 |
|
125 |
+
| 2.9916 | 3.2621 | 420 | 2.1387 | 0.7823 | 0.7652 | 0.8104 | 0.7718 |
|
126 |
+
| 2.9898 | 3.3398 | 430 | 2.0905 | 0.7981 | 0.7821 | 0.8250 | 0.7886 |
|
127 |
+
| 2.9597 | 3.4175 | 440 | 2.0260 | 0.7923 | 0.7769 | 0.8192 | 0.7826 |
|
128 |
+
| 2.9068 | 3.4951 | 450 | 1.9944 | 0.7976 | 0.7816 | 0.8233 | 0.7877 |
|
129 |
+
| 2.8423 | 3.5728 | 460 | 1.9643 | 0.7976 | 0.7805 | 0.8185 | 0.7876 |
|
130 |
+
| 2.8323 | 3.6505 | 470 | 1.8926 | 0.7935 | 0.7754 | 0.8136 | 0.7837 |
|
131 |
+
| 2.7814 | 3.7282 | 480 | 1.8676 | 0.8017 | 0.7856 | 0.8208 | 0.7917 |
|
132 |
+
| 2.7337 | 3.8058 | 490 | 1.8320 | 0.8052 | 0.7905 | 0.8246 | 0.7957 |
|
133 |
+
| 2.7215 | 3.8835 | 500 | 1.8003 | 0.7986 | 0.7834 | 0.8208 | 0.7890 |
|
134 |
+
| 2.6456 | 3.9612 | 510 | 1.7754 | 0.8005 | 0.7848 | 0.8230 | 0.7914 |
|
135 |
+
| 2.6494 | 4.0388 | 520 | 1.7083 | 0.8054 | 0.7895 | 0.8252 | 0.7967 |
|
136 |
+
| 2.5878 | 4.1165 | 530 | 1.6836 | 0.8054 | 0.7878 | 0.8239 | 0.7967 |
|
137 |
+
| 2.592 | 4.1942 | 540 | 1.6770 | 0.8005 | 0.7826 | 0.8220 | 0.7912 |
|
138 |
+
| 2.5698 | 4.2718 | 550 | 1.6184 | 0.8056 | 0.7881 | 0.8268 | 0.7970 |
|
139 |
+
| 2.52 | 4.3495 | 560 | 1.6368 | 0.8064 | 0.7898 | 0.8267 | 0.7975 |
|
140 |
+
| 2.5317 | 4.4272 | 570 | 1.5952 | 0.8059 | 0.7891 | 0.8289 | 0.7972 |
|
141 |
+
| 2.4199 | 4.5049 | 580 | 1.5518 | 0.8163 | 0.8002 | 0.8337 | 0.8082 |
|
142 |
+
| 2.4357 | 4.5825 | 590 | 1.5375 | 0.8095 | 0.7933 | 0.8263 | 0.8012 |
|
143 |
+
| 2.4217 | 4.6602 | 600 | 1.4994 | 0.8127 | 0.7964 | 0.8297 | 0.8042 |
|
144 |
+
| 2.428 | 4.7379 | 610 | 1.4671 | 0.8156 | 0.8003 | 0.8309 | 0.8074 |
|
145 |
+
| 2.3725 | 4.8155 | 620 | 1.4402 | 0.8141 | 0.7973 | 0.8295 | 0.8054 |
|
146 |
+
| 2.3594 | 4.8932 | 630 | 1.4566 | 0.8134 | 0.7976 | 0.8287 | 0.8049 |
|
147 |
+
| 2.3279 | 4.9709 | 640 | 1.4359 | 0.8183 | 0.8034 | 0.8314 | 0.8100 |
|
148 |
+
| 2.3166 | 5.0485 | 650 | 1.4067 | 0.8226 | 0.8086 | 0.8343 | 0.8149 |
|
149 |
+
| 2.3062 | 5.1262 | 660 | 1.3913 | 0.8212 | 0.8072 | 0.8340 | 0.8131 |
|
150 |
+
| 2.3096 | 5.2039 | 670 | 1.3577 | 0.8241 | 0.8107 | 0.8373 | 0.8159 |
|
151 |
+
| 2.2514 | 5.2816 | 680 | 1.3574 | 0.8270 | 0.8136 | 0.8371 | 0.8193 |
|
152 |
+
| 2.2053 | 5.3592 | 690 | 1.3450 | 0.8239 | 0.8101 | 0.8370 | 0.8164 |
|
153 |
+
| 2.2347 | 5.4369 | 700 | 1.3331 | 0.8270 | 0.8137 | 0.8388 | 0.8194 |
|
154 |
+
| 2.215 | 5.5146 | 710 | 1.2902 | 0.8294 | 0.8154 | 0.8419 | 0.8219 |
|
155 |
+
| 2.175 | 5.5922 | 720 | 1.2861 | 0.8256 | 0.8114 | 0.8388 | 0.8181 |
|
156 |
+
| 2.2212 | 5.6699 | 730 | 1.2637 | 0.8321 | 0.8180 | 0.8440 | 0.8241 |
|
157 |
+
| 2.1459 | 5.7476 | 740 | 1.2827 | 0.8302 | 0.8166 | 0.8396 | 0.8227 |
|
158 |
+
| 2.1615 | 5.8252 | 750 | 1.2800 | 0.8311 | 0.8184 | 0.8496 | 0.8239 |
|
159 |
+
| 2.0966 | 5.9029 | 760 | 1.2742 | 0.8326 | 0.8195 | 0.8418 | 0.8251 |
|
160 |
+
| 2.1314 | 5.9806 | 770 | 1.2464 | 0.8316 | 0.8184 | 0.8407 | 0.8238 |
|
161 |
+
| 2.0846 | 6.0583 | 780 | 1.2409 | 0.8326 | 0.8189 | 0.8414 | 0.8250 |
|
162 |
+
| 2.0522 | 6.1359 | 790 | 1.2023 | 0.8365 | 0.8233 | 0.8455 | 0.8292 |
|
163 |
+
| 2.0724 | 6.2136 | 800 | 1.2252 | 0.8309 | 0.8174 | 0.8396 | 0.8235 |
|
164 |
+
| 2.0848 | 6.2913 | 810 | 1.2025 | 0.8321 | 0.8186 | 0.8424 | 0.8248 |
|
165 |
+
| 2.0402 | 6.3689 | 820 | 1.2130 | 0.8333 | 0.8189 | 0.8428 | 0.8255 |
|
166 |
+
| 2.0778 | 6.4466 | 830 | 1.1809 | 0.8375 | 0.8249 | 0.8532 | 0.8302 |
|
167 |
+
| 2.0963 | 6.5243 | 840 | 1.1696 | 0.8365 | 0.8231 | 0.8527 | 0.8289 |
|
168 |
+
| 2.0576 | 6.6019 | 850 | 1.1866 | 0.8321 | 0.8181 | 0.8411 | 0.8245 |
|
169 |
+
| 2.0386 | 6.6796 | 860 | 1.1882 | 0.8302 | 0.8160 | 0.8389 | 0.8227 |
|
170 |
+
| 2.0084 | 6.7573 | 870 | 1.1696 | 0.8372 | 0.8244 | 0.8446 | 0.8301 |
|
171 |
+
| 2.0571 | 6.8350 | 880 | 1.1622 | 0.8353 | 0.8217 | 0.8437 | 0.8280 |
|
172 |
+
| 2.0264 | 6.9126 | 890 | 1.1640 | 0.8336 | 0.8204 | 0.8429 | 0.8263 |
|
173 |
+
| 2.0077 | 6.9903 | 900 | 1.1673 | 0.8367 | 0.8241 | 0.8447 | 0.8295 |
|
174 |
+
| 2.0492 | 7.0680 | 910 | 1.1455 | 0.8404 | 0.8269 | 0.8462 | 0.8330 |
|
175 |
+
| 1.9973 | 7.1456 | 920 | 1.1538 | 0.8379 | 0.8250 | 0.8455 | 0.8307 |
|
176 |
+
| 1.9961 | 7.2233 | 930 | 1.1502 | 0.8367 | 0.8236 | 0.8415 | 0.8295 |
|
177 |
+
| 1.9681 | 7.3010 | 940 | 1.1657 | 0.8384 | 0.8254 | 0.8463 | 0.8311 |
|
178 |
+
| 2.0188 | 7.3786 | 950 | 1.1309 | 0.8379 | 0.8252 | 0.8445 | 0.8310 |
|
179 |
+
| 2.0225 | 7.4563 | 960 | 1.1547 | 0.8367 | 0.8231 | 0.8446 | 0.8294 |
|
180 |
+
| 1.9562 | 7.5340 | 970 | 1.1474 | 0.8377 | 0.8243 | 0.8457 | 0.8305 |
|
181 |
+
| 2.0247 | 7.6117 | 980 | 1.1251 | 0.8365 | 0.8241 | 0.8449 | 0.8294 |
|
182 |
+
| 1.9355 | 7.6893 | 990 | 1.1349 | 0.8397 | 0.8276 | 0.8532 | 0.8329 |
|
183 |
+
| 1.9804 | 7.7670 | 1000 | 1.1545 | 0.8387 | 0.8260 | 0.8457 | 0.8315 |
|
184 |
+
|
185 |
+
|
186 |
+
### Framework versions
|
187 |
+
|
188 |
+
- Transformers 4.40.2
|
189 |
+
- Pytorch 2.3.0
|
190 |
+
- Datasets 2.19.1
|
191 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-50",
|
3 |
+
"architectures": [
|
4 |
+
"ResNetForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
4,
|
9 |
+
6,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"downsample_in_bottleneck": false,
|
13 |
+
"downsample_in_first_stage": false,
|
14 |
+
"embedding_size": 64,
|
15 |
+
"hidden_act": "relu",
|
16 |
+
"hidden_sizes": [
|
17 |
+
256,
|
18 |
+
512,
|
19 |
+
1024,
|
20 |
+
2048
|
21 |
+
],
|
22 |
+
"id2label": {
|
23 |
+
"0": "Affenpinscher",
|
24 |
+
"1": "Afghan Hound",
|
25 |
+
"2": "African Hunting Dog",
|
26 |
+
"3": "Airedale",
|
27 |
+
"4": "American Staffordshire Terrier",
|
28 |
+
"5": "Appenzeller",
|
29 |
+
"6": "Australian Terrier",
|
30 |
+
"7": "Basenji",
|
31 |
+
"8": "Basset",
|
32 |
+
"9": "Beagle",
|
33 |
+
"10": "Bedlington Terrier",
|
34 |
+
"11": "Bernese Mountain Dog",
|
35 |
+
"12": "Black And Tan Coonhound",
|
36 |
+
"13": "Blenheim Spaniel",
|
37 |
+
"14": "Bloodhound",
|
38 |
+
"15": "Bluetick",
|
39 |
+
"16": "Border Collie",
|
40 |
+
"17": "Border Terrier",
|
41 |
+
"18": "Borzoi",
|
42 |
+
"19": "Boston Bull",
|
43 |
+
"20": "Bouvier Des Flandres",
|
44 |
+
"21": "Boxer",
|
45 |
+
"22": "Brabancon Griffon",
|
46 |
+
"23": "Briard",
|
47 |
+
"24": "Brittany Spaniel",
|
48 |
+
"25": "Bull Mastiff",
|
49 |
+
"26": "Cairn",
|
50 |
+
"27": "Cardigan",
|
51 |
+
"28": "Chesapeake Bay Retriever",
|
52 |
+
"29": "Chihuahua",
|
53 |
+
"30": "Chow",
|
54 |
+
"31": "Clumber",
|
55 |
+
"32": "Cocker Spaniel",
|
56 |
+
"33": "Collie",
|
57 |
+
"34": "Curly Coated Retriever",
|
58 |
+
"35": "Dandie Dinmont",
|
59 |
+
"36": "Dhole",
|
60 |
+
"37": "Dingo",
|
61 |
+
"38": "Doberman",
|
62 |
+
"39": "English Foxhound",
|
63 |
+
"40": "English Setter",
|
64 |
+
"41": "English Springer",
|
65 |
+
"42": "Entlebucher",
|
66 |
+
"43": "Eskimo Dog",
|
67 |
+
"44": "Flat Coated Retriever",
|
68 |
+
"45": "French Bulldog",
|
69 |
+
"46": "German Shepherd",
|
70 |
+
"47": "German Short Haired Pointer",
|
71 |
+
"48": "Giant Schnauzer",
|
72 |
+
"49": "Golden Retriever",
|
73 |
+
"50": "Gordon Setter",
|
74 |
+
"51": "Great Dane",
|
75 |
+
"52": "Great Pyrenees",
|
76 |
+
"53": "Greater Swiss Mountain Dog",
|
77 |
+
"54": "Groenendael",
|
78 |
+
"55": "Ibizan Hound",
|
79 |
+
"56": "Irish Setter",
|
80 |
+
"57": "Irish Terrier",
|
81 |
+
"58": "Irish Water Spaniel",
|
82 |
+
"59": "Irish Wolfhound",
|
83 |
+
"60": "Italian Greyhound",
|
84 |
+
"61": "Japanese Spaniel",
|
85 |
+
"62": "Keeshond",
|
86 |
+
"63": "Kelpie",
|
87 |
+
"64": "Kerry Blue Terrier",
|
88 |
+
"65": "Komondor",
|
89 |
+
"66": "Kuvasz",
|
90 |
+
"67": "Labrador Retriever",
|
91 |
+
"68": "Lakeland Terrier",
|
92 |
+
"69": "Leonberg",
|
93 |
+
"70": "Lhasa",
|
94 |
+
"71": "Malamute",
|
95 |
+
"72": "Malinois",
|
96 |
+
"73": "Maltese Dog",
|
97 |
+
"74": "Mexican Hairless",
|
98 |
+
"75": "Miniature Pinscher",
|
99 |
+
"76": "Miniature Poodle",
|
100 |
+
"77": "Miniature Schnauzer",
|
101 |
+
"78": "Newfoundland",
|
102 |
+
"79": "Norfolk Terrier",
|
103 |
+
"80": "Norwegian Elkhound",
|
104 |
+
"81": "Norwich Terrier",
|
105 |
+
"82": "Old English Sheepdog",
|
106 |
+
"83": "Otterhound",
|
107 |
+
"84": "Papillon",
|
108 |
+
"85": "Pekinese",
|
109 |
+
"86": "Pembroke",
|
110 |
+
"87": "Pomeranian",
|
111 |
+
"88": "Pug",
|
112 |
+
"89": "Redbone",
|
113 |
+
"90": "Rhodesian Ridgeback",
|
114 |
+
"91": "Rottweiler",
|
115 |
+
"92": "Saint Bernard",
|
116 |
+
"93": "Saluki",
|
117 |
+
"94": "Samoyed",
|
118 |
+
"95": "Schipperke",
|
119 |
+
"96": "Scotch Terrier",
|
120 |
+
"97": "Scottish Deerhound",
|
121 |
+
"98": "Sealyham Terrier",
|
122 |
+
"99": "Shetland Sheepdog",
|
123 |
+
"100": "Shih Tzu",
|
124 |
+
"101": "Siberian Husky",
|
125 |
+
"102": "Silky Terrier",
|
126 |
+
"103": "Soft Coated Wheaten Terrier",
|
127 |
+
"104": "Staffordshire Bullterrier",
|
128 |
+
"105": "Standard Poodle",
|
129 |
+
"106": "Standard Schnauzer",
|
130 |
+
"107": "Sussex Spaniel",
|
131 |
+
"108": "Tibetan Mastiff",
|
132 |
+
"109": "Tibetan Terrier",
|
133 |
+
"110": "Toy Poodle",
|
134 |
+
"111": "Toy Terrier",
|
135 |
+
"112": "Vizsla",
|
136 |
+
"113": "Walker Hound",
|
137 |
+
"114": "Weimaraner",
|
138 |
+
"115": "Welsh Springer Spaniel",
|
139 |
+
"116": "West Highland White Terrier",
|
140 |
+
"117": "Whippet",
|
141 |
+
"118": "Wire Haired Fox Terrier",
|
142 |
+
"119": "Yorkshire Terrier"
|
143 |
+
},
|
144 |
+
"label2id": {
|
145 |
+
"Affenpinscher": 0,
|
146 |
+
"Afghan Hound": 1,
|
147 |
+
"African Hunting Dog": 2,
|
148 |
+
"Airedale": 3,
|
149 |
+
"American Staffordshire Terrier": 4,
|
150 |
+
"Appenzeller": 5,
|
151 |
+
"Australian Terrier": 6,
|
152 |
+
"Basenji": 7,
|
153 |
+
"Basset": 8,
|
154 |
+
"Beagle": 9,
|
155 |
+
"Bedlington Terrier": 10,
|
156 |
+
"Bernese Mountain Dog": 11,
|
157 |
+
"Black And Tan Coonhound": 12,
|
158 |
+
"Blenheim Spaniel": 13,
|
159 |
+
"Bloodhound": 14,
|
160 |
+
"Bluetick": 15,
|
161 |
+
"Border Collie": 16,
|
162 |
+
"Border Terrier": 17,
|
163 |
+
"Borzoi": 18,
|
164 |
+
"Boston Bull": 19,
|
165 |
+
"Bouvier Des Flandres": 20,
|
166 |
+
"Boxer": 21,
|
167 |
+
"Brabancon Griffon": 22,
|
168 |
+
"Briard": 23,
|
169 |
+
"Brittany Spaniel": 24,
|
170 |
+
"Bull Mastiff": 25,
|
171 |
+
"Cairn": 26,
|
172 |
+
"Cardigan": 27,
|
173 |
+
"Chesapeake Bay Retriever": 28,
|
174 |
+
"Chihuahua": 29,
|
175 |
+
"Chow": 30,
|
176 |
+
"Clumber": 31,
|
177 |
+
"Cocker Spaniel": 32,
|
178 |
+
"Collie": 33,
|
179 |
+
"Curly Coated Retriever": 34,
|
180 |
+
"Dandie Dinmont": 35,
|
181 |
+
"Dhole": 36,
|
182 |
+
"Dingo": 37,
|
183 |
+
"Doberman": 38,
|
184 |
+
"English Foxhound": 39,
|
185 |
+
"English Setter": 40,
|
186 |
+
"English Springer": 41,
|
187 |
+
"Entlebucher": 42,
|
188 |
+
"Eskimo Dog": 43,
|
189 |
+
"Flat Coated Retriever": 44,
|
190 |
+
"French Bulldog": 45,
|
191 |
+
"German Shepherd": 46,
|
192 |
+
"German Short Haired Pointer": 47,
|
193 |
+
"Giant Schnauzer": 48,
|
194 |
+
"Golden Retriever": 49,
|
195 |
+
"Gordon Setter": 50,
|
196 |
+
"Great Dane": 51,
|
197 |
+
"Great Pyrenees": 52,
|
198 |
+
"Greater Swiss Mountain Dog": 53,
|
199 |
+
"Groenendael": 54,
|
200 |
+
"Ibizan Hound": 55,
|
201 |
+
"Irish Setter": 56,
|
202 |
+
"Irish Terrier": 57,
|
203 |
+
"Irish Water Spaniel": 58,
|
204 |
+
"Irish Wolfhound": 59,
|
205 |
+
"Italian Greyhound": 60,
|
206 |
+
"Japanese Spaniel": 61,
|
207 |
+
"Keeshond": 62,
|
208 |
+
"Kelpie": 63,
|
209 |
+
"Kerry Blue Terrier": 64,
|
210 |
+
"Komondor": 65,
|
211 |
+
"Kuvasz": 66,
|
212 |
+
"Labrador Retriever": 67,
|
213 |
+
"Lakeland Terrier": 68,
|
214 |
+
"Leonberg": 69,
|
215 |
+
"Lhasa": 70,
|
216 |
+
"Malamute": 71,
|
217 |
+
"Malinois": 72,
|
218 |
+
"Maltese Dog": 73,
|
219 |
+
"Mexican Hairless": 74,
|
220 |
+
"Miniature Pinscher": 75,
|
221 |
+
"Miniature Poodle": 76,
|
222 |
+
"Miniature Schnauzer": 77,
|
223 |
+
"Newfoundland": 78,
|
224 |
+
"Norfolk Terrier": 79,
|
225 |
+
"Norwegian Elkhound": 80,
|
226 |
+
"Norwich Terrier": 81,
|
227 |
+
"Old English Sheepdog": 82,
|
228 |
+
"Otterhound": 83,
|
229 |
+
"Papillon": 84,
|
230 |
+
"Pekinese": 85,
|
231 |
+
"Pembroke": 86,
|
232 |
+
"Pomeranian": 87,
|
233 |
+
"Pug": 88,
|
234 |
+
"Redbone": 89,
|
235 |
+
"Rhodesian Ridgeback": 90,
|
236 |
+
"Rottweiler": 91,
|
237 |
+
"Saint Bernard": 92,
|
238 |
+
"Saluki": 93,
|
239 |
+
"Samoyed": 94,
|
240 |
+
"Schipperke": 95,
|
241 |
+
"Scotch Terrier": 96,
|
242 |
+
"Scottish Deerhound": 97,
|
243 |
+
"Sealyham Terrier": 98,
|
244 |
+
"Shetland Sheepdog": 99,
|
245 |
+
"Shih Tzu": 100,
|
246 |
+
"Siberian Husky": 101,
|
247 |
+
"Silky Terrier": 102,
|
248 |
+
"Soft Coated Wheaten Terrier": 103,
|
249 |
+
"Staffordshire Bullterrier": 104,
|
250 |
+
"Standard Poodle": 105,
|
251 |
+
"Standard Schnauzer": 106,
|
252 |
+
"Sussex Spaniel": 107,
|
253 |
+
"Tibetan Mastiff": 108,
|
254 |
+
"Tibetan Terrier": 109,
|
255 |
+
"Toy Poodle": 110,
|
256 |
+
"Toy Terrier": 111,
|
257 |
+
"Vizsla": 112,
|
258 |
+
"Walker Hound": 113,
|
259 |
+
"Weimaraner": 114,
|
260 |
+
"Welsh Springer Spaniel": 115,
|
261 |
+
"West Highland White Terrier": 116,
|
262 |
+
"Whippet": 117,
|
263 |
+
"Wire Haired Fox Terrier": 118,
|
264 |
+
"Yorkshire Terrier": 119
|
265 |
+
},
|
266 |
+
"layer_type": "bottleneck",
|
267 |
+
"model_type": "resnet",
|
268 |
+
"num_channels": 3,
|
269 |
+
"out_features": [
|
270 |
+
"stage4"
|
271 |
+
],
|
272 |
+
"out_indices": [
|
273 |
+
4
|
274 |
+
],
|
275 |
+
"problem_type": "single_label_classification",
|
276 |
+
"stage_names": [
|
277 |
+
"stem",
|
278 |
+
"stage1",
|
279 |
+
"stage2",
|
280 |
+
"stage3",
|
281 |
+
"stage4"
|
282 |
+
],
|
283 |
+
"torch_dtype": "float32",
|
284 |
+
"transformers_version": "4.40.2"
|
285 |
+
}
|
config.toml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[training_args]
|
2 |
+
output_dir="/Users/andrewmayes/Openclassroom/CanineNet/code/"
|
3 |
+
evaluation_strategy="steps"
|
4 |
+
save_strategy="steps"
|
5 |
+
learning_rate=5e-5
|
6 |
+
#per_device_train_batch_size=32 # 512
|
7 |
+
#per_device_eval_batch_size=32 # 512
|
8 |
+
# num_train_epochs=5,
|
9 |
+
eval_delay=0 # 50
|
10 |
+
eval_steps=0.01
|
11 |
+
#eval_accumulation_steps
|
12 |
+
gradient_accumulation_steps=4
|
13 |
+
gradient_checkpointing=false#true
|
14 |
+
optim="adafactor"
|
15 |
+
max_steps=1000 # 100
|
16 |
+
#logging_dir=""
|
17 |
+
#log_level="error"
|
18 |
+
load_best_model_at_end=true
|
19 |
+
metric_for_best_model="f1"
|
20 |
+
greater_is_better=true
|
21 |
+
#use_mps_device=true
|
22 |
+
logging_steps=0.01
|
23 |
+
save_steps=0.01
|
24 |
+
#auto_find_batch_size=true
|
25 |
+
report_to="mlflow"
|
26 |
+
save_total_limit=2
|
27 |
+
#hub_model_id="amaye15/SwinV2-Base-Document-Classifier"
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac8d97ad215b4ae316fdf257126ee3fd0726b047c176129bcc2d16eecd327bb2
|
3 |
+
size 95270232
|
preprocessor_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"crop_pct",
|
7 |
+
"resample",
|
8 |
+
"do_rescale",
|
9 |
+
"rescale_factor",
|
10 |
+
"do_normalize",
|
11 |
+
"image_mean",
|
12 |
+
"image_std",
|
13 |
+
"return_tensors",
|
14 |
+
"data_format",
|
15 |
+
"input_data_format"
|
16 |
+
],
|
17 |
+
"crop_pct": 0.875,
|
18 |
+
"do_normalize": true,
|
19 |
+
"do_rescale": true,
|
20 |
+
"do_resize": true,
|
21 |
+
"image_mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"image_processor_type": "ConvNextImageProcessor",
|
27 |
+
"image_std": [
|
28 |
+
0.229,
|
29 |
+
0.224,
|
30 |
+
0.225
|
31 |
+
],
|
32 |
+
"resample": 3,
|
33 |
+
"rescale_factor": 0.00392156862745098,
|
34 |
+
"size": {
|
35 |
+
"shortest_edge": 224
|
36 |
+
}
|
37 |
+
}
|
train.ipynb
ADDED
@@ -0,0 +1,926 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Install"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"Requirement already satisfied: uv in /Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages (0.1.42)\n",
|
20 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
21 |
+
]
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"source": [
|
25 |
+
"%pip install uv"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 2,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stdout",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"\u001b[2mAudited \u001b[1m12 packages\u001b[0m in 8ms\u001b[0m\n"
|
38 |
+
]
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"!uv pip install dagshub setuptools accelerate toml torch torchvision transformers mlflow datasets ipywidgets python-dotenv evaluate"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "markdown",
|
47 |
+
"metadata": {},
|
48 |
+
"source": [
|
49 |
+
"# Setup"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": 3,
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [
|
57 |
+
{
|
58 |
+
"data": {
|
59 |
+
"text/html": [
|
60 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Initialized MLflow to track repo <span style=\"color: #008000; text-decoration-color: #008000\">\"amaye15/CanineNet\"</span>\n",
|
61 |
+
"</pre>\n"
|
62 |
+
],
|
63 |
+
"text/plain": [
|
64 |
+
"Initialized MLflow to track repo \u001b[32m\"amaye15/CanineNet\"\u001b[0m\n"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
"metadata": {},
|
68 |
+
"output_type": "display_data"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"data": {
|
72 |
+
"text/html": [
|
73 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Repository amaye15/CanineNet initialized!\n",
|
74 |
+
"</pre>\n"
|
75 |
+
],
|
76 |
+
"text/plain": [
|
77 |
+
"Repository amaye15/CanineNet initialized!\n"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
"metadata": {},
|
81 |
+
"output_type": "display_data"
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"source": [
|
85 |
+
"import os\n",
|
86 |
+
"import toml\n",
|
87 |
+
"import torch\n",
|
88 |
+
"import mlflow\n",
|
89 |
+
"import dagshub\n",
|
90 |
+
"import datasets\n",
|
91 |
+
"import evaluate\n",
|
92 |
+
"from dotenv import load_dotenv\n",
|
93 |
+
"from torchvision.transforms import v2\n",
|
94 |
+
"from transformers import AutoImageProcessor, AutoModelForImageClassification, TrainingArguments, Trainer\n",
|
95 |
+
"\n",
|
96 |
+
"ENV_PATH = \"/Users/andrewmayes/Openclassroom/CanineNet/.env\"\n",
|
97 |
+
"CONFIG_PATH = \"/Users/andrewmayes/Openclassroom/CanineNet/code/config.toml\"\n",
|
98 |
+
"CONFIG = toml.load(CONFIG_PATH)\n",
|
99 |
+
"\n",
|
100 |
+
"load_dotenv(ENV_PATH)\n",
|
101 |
+
"\n",
|
102 |
+
"dagshub.init(repo_name=os.environ['MLFLOW_TRACKING_PROJECTNAME'], repo_owner=os.environ['MLFLOW_TRACKING_USERNAME'], mlflow=True, dvc=True)\n",
|
103 |
+
"\n",
|
104 |
+
"os.environ['MLFLOW_TRACKING_USERNAME'] = \"amaye15\"\n",
|
105 |
+
"\n",
|
106 |
+
"mlflow.set_tracking_uri(f'https://dagshub.com/' + os.environ['MLFLOW_TRACKING_USERNAME']\n",
|
107 |
+
" + '/' + os.environ['MLFLOW_TRACKING_PROJECTNAME'] + '.mlflow')\n",
|
108 |
+
"\n",
|
109 |
+
"CREATE_DATASET = True\n",
|
110 |
+
"ORIGINAL_DATASET = \"Alanox/stanford-dogs\"\n",
|
111 |
+
"MODIFIED_DATASET = \"amaye15/stanford-dogs\"\n",
|
112 |
+
"REMOVE_COLUMNS = [\"name\", \"annotations\"]\n",
|
113 |
+
"RENAME_COLUMNS = {\"image\":\"pixel_values\", \"target\":\"label\"}\n",
|
114 |
+
"SPLIT = 0.2\n",
|
115 |
+
"\n",
|
116 |
+
"METRICS = [\"accuracy\", \"f1\", \"precision\", \"recall\"]\n",
|
117 |
+
"# MODELS = 'google/vit-base-patch16-224'\n",
|
118 |
+
"# MODELS = \"google/siglip-base-patch16-224\"\n",
|
119 |
+
"\n"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "markdown",
|
124 |
+
"metadata": {},
|
125 |
+
"source": [
|
126 |
+
"# Dataset"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 4,
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"Affenpinscher: 0\n",
|
139 |
+
"Afghan Hound: 1\n",
|
140 |
+
"African Hunting Dog: 2\n",
|
141 |
+
"Airedale: 3\n",
|
142 |
+
"American Staffordshire Terrier: 4\n",
|
143 |
+
"Appenzeller: 5\n",
|
144 |
+
"Australian Terrier: 6\n",
|
145 |
+
"Basenji: 7\n",
|
146 |
+
"Basset: 8\n",
|
147 |
+
"Beagle: 9\n",
|
148 |
+
"Bedlington Terrier: 10\n",
|
149 |
+
"Bernese Mountain Dog: 11\n",
|
150 |
+
"Black And Tan Coonhound: 12\n",
|
151 |
+
"Blenheim Spaniel: 13\n",
|
152 |
+
"Bloodhound: 14\n",
|
153 |
+
"Bluetick: 15\n",
|
154 |
+
"Border Collie: 16\n",
|
155 |
+
"Border Terrier: 17\n",
|
156 |
+
"Borzoi: 18\n",
|
157 |
+
"Boston Bull: 19\n",
|
158 |
+
"Bouvier Des Flandres: 20\n",
|
159 |
+
"Boxer: 21\n",
|
160 |
+
"Brabancon Griffon: 22\n",
|
161 |
+
"Briard: 23\n",
|
162 |
+
"Brittany Spaniel: 24\n",
|
163 |
+
"Bull Mastiff: 25\n",
|
164 |
+
"Cairn: 26\n",
|
165 |
+
"Cardigan: 27\n",
|
166 |
+
"Chesapeake Bay Retriever: 28\n",
|
167 |
+
"Chihuahua: 29\n",
|
168 |
+
"Chow: 30\n",
|
169 |
+
"Clumber: 31\n",
|
170 |
+
"Cocker Spaniel: 32\n",
|
171 |
+
"Collie: 33\n",
|
172 |
+
"Curly Coated Retriever: 34\n",
|
173 |
+
"Dandie Dinmont: 35\n",
|
174 |
+
"Dhole: 36\n",
|
175 |
+
"Dingo: 37\n",
|
176 |
+
"Doberman: 38\n",
|
177 |
+
"English Foxhound: 39\n",
|
178 |
+
"English Setter: 40\n",
|
179 |
+
"English Springer: 41\n",
|
180 |
+
"Entlebucher: 42\n",
|
181 |
+
"Eskimo Dog: 43\n",
|
182 |
+
"Flat Coated Retriever: 44\n",
|
183 |
+
"French Bulldog: 45\n",
|
184 |
+
"German Shepherd: 46\n",
|
185 |
+
"German Short Haired Pointer: 47\n",
|
186 |
+
"Giant Schnauzer: 48\n",
|
187 |
+
"Golden Retriever: 49\n",
|
188 |
+
"Gordon Setter: 50\n",
|
189 |
+
"Great Dane: 51\n",
|
190 |
+
"Great Pyrenees: 52\n",
|
191 |
+
"Greater Swiss Mountain Dog: 53\n",
|
192 |
+
"Groenendael: 54\n",
|
193 |
+
"Ibizan Hound: 55\n",
|
194 |
+
"Irish Setter: 56\n",
|
195 |
+
"Irish Terrier: 57\n",
|
196 |
+
"Irish Water Spaniel: 58\n",
|
197 |
+
"Irish Wolfhound: 59\n",
|
198 |
+
"Italian Greyhound: 60\n",
|
199 |
+
"Japanese Spaniel: 61\n",
|
200 |
+
"Keeshond: 62\n",
|
201 |
+
"Kelpie: 63\n",
|
202 |
+
"Kerry Blue Terrier: 64\n",
|
203 |
+
"Komondor: 65\n",
|
204 |
+
"Kuvasz: 66\n",
|
205 |
+
"Labrador Retriever: 67\n",
|
206 |
+
"Lakeland Terrier: 68\n",
|
207 |
+
"Leonberg: 69\n",
|
208 |
+
"Lhasa: 70\n",
|
209 |
+
"Malamute: 71\n",
|
210 |
+
"Malinois: 72\n",
|
211 |
+
"Maltese Dog: 73\n",
|
212 |
+
"Mexican Hairless: 74\n",
|
213 |
+
"Miniature Pinscher: 75\n",
|
214 |
+
"Miniature Poodle: 76\n",
|
215 |
+
"Miniature Schnauzer: 77\n",
|
216 |
+
"Newfoundland: 78\n",
|
217 |
+
"Norfolk Terrier: 79\n",
|
218 |
+
"Norwegian Elkhound: 80\n",
|
219 |
+
"Norwich Terrier: 81\n",
|
220 |
+
"Old English Sheepdog: 82\n",
|
221 |
+
"Otterhound: 83\n",
|
222 |
+
"Papillon: 84\n",
|
223 |
+
"Pekinese: 85\n",
|
224 |
+
"Pembroke: 86\n",
|
225 |
+
"Pomeranian: 87\n",
|
226 |
+
"Pug: 88\n",
|
227 |
+
"Redbone: 89\n",
|
228 |
+
"Rhodesian Ridgeback: 90\n",
|
229 |
+
"Rottweiler: 91\n",
|
230 |
+
"Saint Bernard: 92\n",
|
231 |
+
"Saluki: 93\n",
|
232 |
+
"Samoyed: 94\n",
|
233 |
+
"Schipperke: 95\n",
|
234 |
+
"Scotch Terrier: 96\n",
|
235 |
+
"Scottish Deerhound: 97\n",
|
236 |
+
"Sealyham Terrier: 98\n",
|
237 |
+
"Shetland Sheepdog: 99\n",
|
238 |
+
"Shih Tzu: 100\n",
|
239 |
+
"Siberian Husky: 101\n",
|
240 |
+
"Silky Terrier: 102\n",
|
241 |
+
"Soft Coated Wheaten Terrier: 103\n",
|
242 |
+
"Staffordshire Bullterrier: 104\n",
|
243 |
+
"Standard Poodle: 105\n",
|
244 |
+
"Standard Schnauzer: 106\n",
|
245 |
+
"Sussex Spaniel: 107\n",
|
246 |
+
"Tibetan Mastiff: 108\n",
|
247 |
+
"Tibetan Terrier: 109\n",
|
248 |
+
"Toy Poodle: 110\n",
|
249 |
+
"Toy Terrier: 111\n",
|
250 |
+
"Vizsla: 112\n",
|
251 |
+
"Walker Hound: 113\n",
|
252 |
+
"Weimaraner: 114\n",
|
253 |
+
"Welsh Springer Spaniel: 115\n",
|
254 |
+
"West Highland White Terrier: 116\n",
|
255 |
+
"Whippet: 117\n",
|
256 |
+
"Wire Haired Fox Terrier: 118\n",
|
257 |
+
"Yorkshire Terrier: 119\n"
|
258 |
+
]
|
259 |
+
}
|
260 |
+
],
|
261 |
+
"source": [
|
262 |
+
"if CREATE_DATASET:\n",
|
263 |
+
" ds = datasets.load_dataset(ORIGINAL_DATASET, token=os.getenv(\"HF_TOKEN\"), split=\"full\", trust_remote_code=True)\n",
|
264 |
+
" ds = ds.remove_columns(REMOVE_COLUMNS).rename_columns(RENAME_COLUMNS)\n",
|
265 |
+
"\n",
|
266 |
+
" labels = ds.select_columns(\"label\").to_pandas().sort_values(\"label\").get(\"label\").unique().tolist()\n",
|
267 |
+
" numbers = range(len(labels))\n",
|
268 |
+
" label2int = dict(zip(labels, numbers))\n",
|
269 |
+
" int2label = dict(zip(numbers, labels))\n",
|
270 |
+
"\n",
|
271 |
+
" for key, val in label2int.items():\n",
|
272 |
+
" print(f\"{key}: {val}\")\n",
|
273 |
+
"\n",
|
274 |
+
" ds = ds.class_encode_column(\"label\")\n",
|
275 |
+
" ds = ds.align_labels_with_mapping(label2int, \"label\")\n",
|
276 |
+
"\n",
|
277 |
+
" ds = ds.train_test_split(test_size=SPLIT, stratify_by_column = \"label\")\n",
|
278 |
+
" #ds.push_to_hub(MODIFIED_DATASET, token=os.getenv(\"HF_TOKEN\"))\n",
|
279 |
+
"\n",
|
280 |
+
" CONFIG[\"label2int\"] = str(label2int)\n",
|
281 |
+
" CONFIG[\"int2label\"] = str(int2label)\n",
|
282 |
+
"\n",
|
283 |
+
" # with open(\"output.toml\", \"w\") as toml_file:\n",
|
284 |
+
" # toml.dump(toml.dumps(CONFIG), toml_file)\n",
|
285 |
+
"\n",
|
286 |
+
" #ds = datasets.load_dataset(MODIFIED_DATASET, token=os.getenv(\"HF_TOKEN\"), trust_remote_code=True, streaming=True)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 5,
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [
|
294 |
+
{
|
295 |
+
"name": "stderr",
|
296 |
+
"output_type": "stream",
|
297 |
+
"text": [
|
298 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
|
299 |
+
" warnings.warn(\n",
|
300 |
+
"Could not find image processor class in the image processor config or the model config. Loading based on pattern matching with the model's feature extractor configuration. Please open a PR/issue to update `preprocessor_config.json` to use `image_processor_type` instead of `feature_extractor_type`. This warning will be removed in v4.40.\n",
|
301 |
+
"Some weights of ResNetForImageClassification were not initialized from the model checkpoint at microsoft/resnet-50 and are newly initialized because the shapes did not match:\n",
|
302 |
+
"- classifier.1.bias: found shape torch.Size([1000]) in the checkpoint and torch.Size([120]) in the model instantiated\n",
|
303 |
+
"- classifier.1.weight: found shape torch.Size([1000, 2048]) in the checkpoint and torch.Size([120, 2048]) in the model instantiated\n",
|
304 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
305 |
+
"max_steps is given, it will override any value given in num_train_epochs\n"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"data": {
|
310 |
+
"application/vnd.jupyter.widget-view+json": {
|
311 |
+
"model_id": "037a86c2839440679fcff5595079beac",
|
312 |
+
"version_major": 2,
|
313 |
+
"version_minor": 0
|
314 |
+
},
|
315 |
+
"text/plain": [
|
316 |
+
" 0%| | 0/1000 [00:00<?, ?it/s]"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
"metadata": {},
|
320 |
+
"output_type": "display_data"
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"name": "stdout",
|
324 |
+
"output_type": "stream",
|
325 |
+
"text": [
|
326 |
+
"{'loss': 4.7829, 'grad_norm': 0.6043907999992371, 'learning_rate': 4.9500000000000004e-05, 'epoch': 0.08}\n"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"data": {
|
331 |
+
"application/vnd.jupyter.widget-view+json": {
|
332 |
+
"model_id": "b1f85d03fadd4763a741fec5e5285d2a",
|
333 |
+
"version_major": 2,
|
334 |
+
"version_minor": 0
|
335 |
+
},
|
336 |
+
"text/plain": [
|
337 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
"metadata": {},
|
341 |
+
"output_type": "display_data"
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"name": "stderr",
|
345 |
+
"output_type": "stream",
|
346 |
+
"text": [
|
347 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
348 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"name": "stdout",
|
353 |
+
"output_type": "stream",
|
354 |
+
"text": [
|
355 |
+
"{'eval_loss': 4.77471923828125, 'eval_accuracy': 0.2118561710398445, 'eval_f1': 0.187375517726323, 'eval_precision': 0.3919036860239945, 'eval_recall': 0.19824327355121704, 'eval_runtime': 33.4309, 'eval_samples_per_second': 123.12, 'eval_steps_per_second': 3.859, 'epoch': 0.08}\n",
|
356 |
+
"{'loss': 4.7714, 'grad_norm': 0.6754865050315857, 'learning_rate': 4.9e-05, 'epoch': 0.16}\n"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"data": {
|
361 |
+
"application/vnd.jupyter.widget-view+json": {
|
362 |
+
"model_id": "268749f0d84a4fde98822b2ce1eead4f",
|
363 |
+
"version_major": 2,
|
364 |
+
"version_minor": 0
|
365 |
+
},
|
366 |
+
"text/plain": [
|
367 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
368 |
+
]
|
369 |
+
},
|
370 |
+
"metadata": {},
|
371 |
+
"output_type": "display_data"
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"name": "stderr",
|
375 |
+
"output_type": "stream",
|
376 |
+
"text": [
|
377 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
378 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"name": "stdout",
|
383 |
+
"output_type": "stream",
|
384 |
+
"text": [
|
385 |
+
"{'eval_loss': 4.757228851318359, 'eval_accuracy': 0.20383867832847424, 'eval_f1': 0.18416981866925827, 'eval_precision': 0.42618136770448983, 'eval_recall': 0.18363998800713158, 'eval_runtime': 30.7622, 'eval_samples_per_second': 133.801, 'eval_steps_per_second': 4.193, 'epoch': 0.16}\n",
|
386 |
+
"{'loss': 4.7606, 'grad_norm': 0.6417286992073059, 'learning_rate': 4.85e-05, 'epoch': 0.23}\n"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"data": {
|
391 |
+
"application/vnd.jupyter.widget-view+json": {
|
392 |
+
"model_id": "907e888ac52d4fe18fb87cc1cfe2b22f",
|
393 |
+
"version_major": 2,
|
394 |
+
"version_minor": 0
|
395 |
+
},
|
396 |
+
"text/plain": [
|
397 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
"metadata": {},
|
401 |
+
"output_type": "display_data"
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"name": "stderr",
|
405 |
+
"output_type": "stream",
|
406 |
+
"text": [
|
407 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
408 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"name": "stdout",
|
413 |
+
"output_type": "stream",
|
414 |
+
"text": [
|
415 |
+
"{'eval_loss': 4.736657619476318, 'eval_accuracy': 0.358600583090379, 'eval_f1': 0.3433113409864575, 'eval_precision': 0.6517178219942168, 'eval_recall': 0.3306848427836897, 'eval_runtime': 29.5337, 'eval_samples_per_second': 139.366, 'eval_steps_per_second': 4.368, 'epoch': 0.23}\n",
|
416 |
+
"{'loss': 4.747, 'grad_norm': 0.6243997812271118, 'learning_rate': 4.8e-05, 'epoch': 0.31}\n"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"data": {
|
421 |
+
"application/vnd.jupyter.widget-view+json": {
|
422 |
+
"model_id": "a2c7266f55814c86badb55ec9f3c12cc",
|
423 |
+
"version_major": 2,
|
424 |
+
"version_minor": 0
|
425 |
+
},
|
426 |
+
"text/plain": [
|
427 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
"metadata": {},
|
431 |
+
"output_type": "display_data"
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"name": "stderr",
|
435 |
+
"output_type": "stream",
|
436 |
+
"text": [
|
437 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
438 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"name": "stdout",
|
443 |
+
"output_type": "stream",
|
444 |
+
"text": [
|
445 |
+
"{'eval_loss': 4.714941501617432, 'eval_accuracy': 0.4302721088435374, 'eval_f1': 0.42721541071711805, 'eval_precision': 0.773414620851018, 'eval_recall': 0.40385862239180403, 'eval_runtime': 31.0076, 'eval_samples_per_second': 132.742, 'eval_steps_per_second': 4.16, 'epoch': 0.31}\n",
|
446 |
+
"{'loss': 4.7253, 'grad_norm': 0.6433669328689575, 'learning_rate': 4.75e-05, 'epoch': 0.39}\n"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"data": {
|
451 |
+
"application/vnd.jupyter.widget-view+json": {
|
452 |
+
"model_id": "8a6ab27c180d4d68925da71fb6d734d8",
|
453 |
+
"version_major": 2,
|
454 |
+
"version_minor": 0
|
455 |
+
},
|
456 |
+
"text/plain": [
|
457 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
"metadata": {},
|
461 |
+
"output_type": "display_data"
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"name": "stderr",
|
465 |
+
"output_type": "stream",
|
466 |
+
"text": [
|
467 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
468 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"name": "stdout",
|
473 |
+
"output_type": "stream",
|
474 |
+
"text": [
|
475 |
+
"{'eval_loss': 4.684640884399414, 'eval_accuracy': 0.4361030126336249, 'eval_f1': 0.4677602303574034, 'eval_precision': 0.7906333558807621, 'eval_recall': 0.4160270614713831, 'eval_runtime': 31.2777, 'eval_samples_per_second': 131.595, 'eval_steps_per_second': 4.124, 'epoch': 0.39}\n",
|
476 |
+
"{'loss': 4.7069, 'grad_norm': 0.7207397818565369, 'learning_rate': 4.7e-05, 'epoch': 0.47}\n"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"data": {
|
481 |
+
"application/vnd.jupyter.widget-view+json": {
|
482 |
+
"model_id": "ff7ef69b883549f988fda71b35cb9ef1",
|
483 |
+
"version_major": 2,
|
484 |
+
"version_minor": 0
|
485 |
+
},
|
486 |
+
"text/plain": [
|
487 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
"metadata": {},
|
491 |
+
"output_type": "display_data"
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"name": "stderr",
|
495 |
+
"output_type": "stream",
|
496 |
+
"text": [
|
497 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
498 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
499 |
+
]
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"name": "stdout",
|
503 |
+
"output_type": "stream",
|
504 |
+
"text": [
|
505 |
+
"{'eval_loss': 4.653403282165527, 'eval_accuracy': 0.533041788143829, 'eval_f1': 0.5396864056951644, 'eval_precision': 0.804847761263092, 'eval_recall': 0.5092981237432466, 'eval_runtime': 28.6761, 'eval_samples_per_second': 143.534, 'eval_steps_per_second': 4.499, 'epoch': 0.47}\n",
|
506 |
+
"{'loss': 4.6857, 'grad_norm': 0.7303667068481445, 'learning_rate': 4.6500000000000005e-05, 'epoch': 0.54}\n"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"data": {
|
511 |
+
"application/vnd.jupyter.widget-view+json": {
|
512 |
+
"model_id": "c293ebbb0aec4666b6ad0d17517e2a29",
|
513 |
+
"version_major": 2,
|
514 |
+
"version_minor": 0
|
515 |
+
},
|
516 |
+
"text/plain": [
|
517 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
"metadata": {},
|
521 |
+
"output_type": "display_data"
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"name": "stderr",
|
525 |
+
"output_type": "stream",
|
526 |
+
"text": [
|
527 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
528 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
529 |
+
]
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"name": "stdout",
|
533 |
+
"output_type": "stream",
|
534 |
+
"text": [
|
535 |
+
"{'eval_loss': 4.617745399475098, 'eval_accuracy': 0.5500485908649174, 'eval_f1': 0.5511369002526866, 'eval_precision': 0.7998093864476505, 'eval_recall': 0.5263615811202424, 'eval_runtime': 28.5304, 'eval_samples_per_second': 144.267, 'eval_steps_per_second': 4.521, 'epoch': 0.54}\n",
|
536 |
+
"{'loss': 4.6569, 'grad_norm': 0.744701623916626, 'learning_rate': 4.600000000000001e-05, 'epoch': 0.62}\n"
|
537 |
+
]
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"data": {
|
541 |
+
"application/vnd.jupyter.widget-view+json": {
|
542 |
+
"model_id": "53ce3795c47f4dd18f0f926d1532fb9a",
|
543 |
+
"version_major": 2,
|
544 |
+
"version_minor": 0
|
545 |
+
},
|
546 |
+
"text/plain": [
|
547 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
"metadata": {},
|
551 |
+
"output_type": "display_data"
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"name": "stderr",
|
555 |
+
"output_type": "stream",
|
556 |
+
"text": [
|
557 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
558 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"name": "stdout",
|
563 |
+
"output_type": "stream",
|
564 |
+
"text": [
|
565 |
+
"{'eval_loss': 4.576382160186768, 'eval_accuracy': 0.5738581146744413, 'eval_f1': 0.5800354551041117, 'eval_precision': 0.8207891649420048, 'eval_recall': 0.5516830965289926, 'eval_runtime': 28.9367, 'eval_samples_per_second': 142.241, 'eval_steps_per_second': 4.458, 'epoch': 0.62}\n",
|
566 |
+
"{'loss': 4.6293, 'grad_norm': 0.8225492238998413, 'learning_rate': 4.55e-05, 'epoch': 0.7}\n"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"data": {
|
571 |
+
"application/vnd.jupyter.widget-view+json": {
|
572 |
+
"model_id": "388b626051df4cde8bfacb4f10f53706",
|
573 |
+
"version_major": 2,
|
574 |
+
"version_minor": 0
|
575 |
+
},
|
576 |
+
"text/plain": [
|
577 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
"metadata": {},
|
581 |
+
"output_type": "display_data"
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"name": "stderr",
|
585 |
+
"output_type": "stream",
|
586 |
+
"text": [
|
587 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
588 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"name": "stdout",
|
593 |
+
"output_type": "stream",
|
594 |
+
"text": [
|
595 |
+
"{'eval_loss': 4.535852432250977, 'eval_accuracy': 0.6141885325558795, 'eval_f1': 0.6148517759248673, 'eval_precision': 0.807489842077252, 'eval_recall': 0.5926437581767611, 'eval_runtime': 29.8128, 'eval_samples_per_second': 138.062, 'eval_steps_per_second': 4.327, 'epoch': 0.7}\n",
|
596 |
+
"{'loss': 4.5953, 'grad_norm': 0.835442066192627, 'learning_rate': 4.5e-05, 'epoch': 0.78}\n"
|
597 |
+
]
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"data": {
|
601 |
+
"application/vnd.jupyter.widget-view+json": {
|
602 |
+
"model_id": "0969f9351eae4472814238ff34b3a129",
|
603 |
+
"version_major": 2,
|
604 |
+
"version_minor": 0
|
605 |
+
},
|
606 |
+
"text/plain": [
|
607 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
608 |
+
]
|
609 |
+
},
|
610 |
+
"metadata": {},
|
611 |
+
"output_type": "display_data"
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"name": "stderr",
|
615 |
+
"output_type": "stream",
|
616 |
+
"text": [
|
617 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
618 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
619 |
+
]
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"name": "stdout",
|
623 |
+
"output_type": "stream",
|
624 |
+
"text": [
|
625 |
+
"{'eval_loss': 4.482782363891602, 'eval_accuracy': 0.6207482993197279, 'eval_f1': 0.6233347480319061, 'eval_precision': 0.8108960881073339, 'eval_recall': 0.5999664720807305, 'eval_runtime': 30.0674, 'eval_samples_per_second': 136.893, 'eval_steps_per_second': 4.29, 'epoch': 0.78}\n",
|
626 |
+
"{'loss': 4.5651, 'grad_norm': 0.8578382134437561, 'learning_rate': 4.4500000000000004e-05, 'epoch': 0.85}\n"
|
627 |
+
]
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"data": {
|
631 |
+
"application/vnd.jupyter.widget-view+json": {
|
632 |
+
"model_id": "30b40f923e894e87b98cd86c2fe885e0",
|
633 |
+
"version_major": 2,
|
634 |
+
"version_minor": 0
|
635 |
+
},
|
636 |
+
"text/plain": [
|
637 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
"metadata": {},
|
641 |
+
"output_type": "display_data"
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"name": "stderr",
|
645 |
+
"output_type": "stream",
|
646 |
+
"text": [
|
647 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
648 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"name": "stdout",
|
653 |
+
"output_type": "stream",
|
654 |
+
"text": [
|
655 |
+
"{'eval_loss': 4.425670146942139, 'eval_accuracy': 0.6591350826044704, 'eval_f1': 0.6584699253003153, 'eval_precision': 0.8147592711787498, 'eval_recall': 0.6393439002306762, 'eval_runtime': 28.4304, 'eval_samples_per_second': 144.775, 'eval_steps_per_second': 4.537, 'epoch': 0.85}\n",
|
656 |
+
"{'loss': 4.5296, 'grad_norm': 0.9620392322540283, 'learning_rate': 4.4000000000000006e-05, 'epoch': 0.93}\n"
|
657 |
+
]
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"data": {
|
661 |
+
"application/vnd.jupyter.widget-view+json": {
|
662 |
+
"model_id": "0a2e4094efc9460e8b0720746df15da2",
|
663 |
+
"version_major": 2,
|
664 |
+
"version_minor": 0
|
665 |
+
},
|
666 |
+
"text/plain": [
|
667 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
668 |
+
]
|
669 |
+
},
|
670 |
+
"metadata": {},
|
671 |
+
"output_type": "display_data"
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"name": "stderr",
|
675 |
+
"output_type": "stream",
|
676 |
+
"text": [
|
677 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
678 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
679 |
+
]
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"name": "stdout",
|
683 |
+
"output_type": "stream",
|
684 |
+
"text": [
|
685 |
+
"{'eval_loss': 4.364680290222168, 'eval_accuracy': 0.706268221574344, 'eval_f1': 0.7012054635300039, 'eval_precision': 0.8284350125904834, 'eval_recall': 0.688199507444556, 'eval_runtime': 28.5471, 'eval_samples_per_second': 144.183, 'eval_steps_per_second': 4.519, 'epoch': 0.93}\n",
|
686 |
+
"{'loss': 4.4911, 'grad_norm': 0.9173192977905273, 'learning_rate': 4.35e-05, 'epoch': 1.01}\n"
|
687 |
+
]
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"data": {
|
691 |
+
"application/vnd.jupyter.widget-view+json": {
|
692 |
+
"model_id": "18ea4e46851043e9bd175bd132b7ed0f",
|
693 |
+
"version_major": 2,
|
694 |
+
"version_minor": 0
|
695 |
+
},
|
696 |
+
"text/plain": [
|
697 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
698 |
+
]
|
699 |
+
},
|
700 |
+
"metadata": {},
|
701 |
+
"output_type": "display_data"
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"name": "stderr",
|
705 |
+
"output_type": "stream",
|
706 |
+
"text": [
|
707 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
708 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
709 |
+
]
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"name": "stdout",
|
713 |
+
"output_type": "stream",
|
714 |
+
"text": [
|
715 |
+
"{'eval_loss': 4.299846649169922, 'eval_accuracy': 0.7089407191448007, 'eval_f1': 0.7073568856764126, 'eval_precision': 0.8325596625698185, 'eval_recall': 0.6924090542708233, 'eval_runtime': 28.5965, 'eval_samples_per_second': 143.934, 'eval_steps_per_second': 4.511, 'epoch': 1.01}\n",
|
716 |
+
"{'loss': 4.4442, 'grad_norm': 0.9183776378631592, 'learning_rate': 4.3e-05, 'epoch': 1.09}\n"
|
717 |
+
]
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"data": {
|
721 |
+
"application/vnd.jupyter.widget-view+json": {
|
722 |
+
"model_id": "f77e01f5212d46f49e8970bae34705be",
|
723 |
+
"version_major": 2,
|
724 |
+
"version_minor": 0
|
725 |
+
},
|
726 |
+
"text/plain": [
|
727 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
728 |
+
]
|
729 |
+
},
|
730 |
+
"metadata": {},
|
731 |
+
"output_type": "display_data"
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"name": "stderr",
|
735 |
+
"output_type": "stream",
|
736 |
+
"text": [
|
737 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
738 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
739 |
+
]
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"name": "stdout",
|
743 |
+
"output_type": "stream",
|
744 |
+
"text": [
|
745 |
+
"{'eval_loss': 4.228794574737549, 'eval_accuracy': 0.6938775510204082, 'eval_f1': 0.6890499178440211, 'eval_precision': 0.8302365826885487, 'eval_recall': 0.6758939664483897, 'eval_runtime': 28.7618, 'eval_samples_per_second': 143.106, 'eval_steps_per_second': 4.485, 'epoch': 1.09}\n",
|
746 |
+
"{'loss': 4.3912, 'grad_norm': 1.0323781967163086, 'learning_rate': 4.25e-05, 'epoch': 1.17}\n"
|
747 |
+
]
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"data": {
|
751 |
+
"application/vnd.jupyter.widget-view+json": {
|
752 |
+
"model_id": "12d209218a594953b4abfaf14de05b8b",
|
753 |
+
"version_major": 2,
|
754 |
+
"version_minor": 0
|
755 |
+
},
|
756 |
+
"text/plain": [
|
757 |
+
" 0%| | 0/129 [00:00<?, ?it/s]"
|
758 |
+
]
|
759 |
+
},
|
760 |
+
"metadata": {},
|
761 |
+
"output_type": "display_data"
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"name": "stderr",
|
765 |
+
"output_type": "stream",
|
766 |
+
"text": [
|
767 |
+
"/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
768 |
+
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
|
769 |
+
]
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"name": "stdout",
|
773 |
+
"output_type": "stream",
|
774 |
+
"text": [
|
775 |
+
"{'eval_loss': 4.152723789215088, 'eval_accuracy': 0.6873177842565598, 'eval_f1': 0.6863011851876918, 'eval_precision': 0.8261897457310591, 'eval_recall': 0.6702606718880093, 'eval_runtime': 29.7578, 'eval_samples_per_second': 138.317, 'eval_steps_per_second': 4.335, 'epoch': 1.17}\n"
|
776 |
+
]
|
777 |
+
}
|
778 |
+
],
|
779 |
+
"source": [
|
780 |
+
"metrics = {metric: evaluate.load(metric) for metric in METRICS}\n",
|
781 |
+
"\n",
|
782 |
+
"\n",
|
783 |
+
"# for lr in [5e-3, 5e-4, 5e-5]: # 5e-5\n",
|
784 |
+
"# for batch in [64]: # 32\n",
|
785 |
+
"# for model_name in [\"google/vit-base-patch16-224\", \"microsoft/swinv2-base-patch4-window16-256\", \"google/siglip-base-patch16-224\"]: # \"facebook/dinov2-base\"\n",
|
786 |
+
"\n",
|
787 |
+
"lr = 5e-4\n",
|
788 |
+
"batch = 32\n",
|
789 |
+
"model_name = \"microsoft/resnet-50\"\n",
|
790 |
+
"\n",
|
791 |
+
"image_processor = AutoImageProcessor.from_pretrained(model_name)\n",
|
792 |
+
"model = AutoModelForImageClassification.from_pretrained(\n",
|
793 |
+
"model_name,\n",
|
794 |
+
"num_labels=len(label2int),\n",
|
795 |
+
"id2label=int2label,\n",
|
796 |
+
"label2id=label2int,\n",
|
797 |
+
"ignore_mismatched_sizes=True,\n",
|
798 |
+
")\n",
|
799 |
+
"\n",
|
800 |
+
"# Then, in your transformations:\n",
|
801 |
+
"def train_transform(examples, num_ops=10, magnitude=9, num_magnitude_bins=31):\n",
|
802 |
+
"\n",
|
803 |
+
" transformation = v2.Compose(\n",
|
804 |
+
" [\n",
|
805 |
+
" v2.RandAugment(\n",
|
806 |
+
" num_ops=num_ops,\n",
|
807 |
+
" magnitude=magnitude,\n",
|
808 |
+
" num_magnitude_bins=num_magnitude_bins,\n",
|
809 |
+
" )\n",
|
810 |
+
" ]\n",
|
811 |
+
" )\n",
|
812 |
+
" # Ensure each image has three dimensions (in this case, ensure it's RGB)\n",
|
813 |
+
" examples[\"pixel_values\"] = [\n",
|
814 |
+
" image.convert(\"RGB\") for image in examples[\"pixel_values\"]\n",
|
815 |
+
" ]\n",
|
816 |
+
" # Apply transformations\n",
|
817 |
+
" examples[\"pixel_values\"] = [\n",
|
818 |
+
" image_processor(transformation(image), return_tensors=\"pt\")[\n",
|
819 |
+
" \"pixel_values\"\n",
|
820 |
+
" ].squeeze()\n",
|
821 |
+
" for image in examples[\"pixel_values\"]\n",
|
822 |
+
" ]\n",
|
823 |
+
" return examples\n",
|
824 |
+
"\n",
|
825 |
+
"\n",
|
826 |
+
"def test_transform(examples):\n",
|
827 |
+
" # Ensure each image is RGB\n",
|
828 |
+
" examples[\"pixel_values\"] = [\n",
|
829 |
+
" image.convert(\"RGB\") for image in examples[\"pixel_values\"]\n",
|
830 |
+
" ]\n",
|
831 |
+
" # Apply processing\n",
|
832 |
+
" examples[\"pixel_values\"] = [\n",
|
833 |
+
" image_processor(image, return_tensors=\"pt\")[\"pixel_values\"].squeeze()\n",
|
834 |
+
" for image in examples[\"pixel_values\"]\n",
|
835 |
+
" ]\n",
|
836 |
+
" return examples\n",
|
837 |
+
"\n",
|
838 |
+
"\n",
|
839 |
+
"def compute_metrics(eval_pred):\n",
|
840 |
+
" predictions, labels = eval_pred\n",
|
841 |
+
" # predictions = np.argmax(logits, axis=-1)\n",
|
842 |
+
" results = {}\n",
|
843 |
+
" for key, val in metrics.items():\n",
|
844 |
+
" if \"accuracy\" == key:\n",
|
845 |
+
" result = next(\n",
|
846 |
+
" iter(val.compute(predictions=predictions, references=labels).items())\n",
|
847 |
+
" )\n",
|
848 |
+
" if \"accuracy\" != key:\n",
|
849 |
+
" result = next(\n",
|
850 |
+
" iter(\n",
|
851 |
+
" val.compute(\n",
|
852 |
+
" predictions=predictions, references=labels, average=\"macro\"\n",
|
853 |
+
" ).items()\n",
|
854 |
+
" )\n",
|
855 |
+
" )\n",
|
856 |
+
" results[result[0]] = result[1]\n",
|
857 |
+
" return results\n",
|
858 |
+
"\n",
|
859 |
+
"\n",
|
860 |
+
"def collate_fn(examples):\n",
|
861 |
+
" pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\n",
|
862 |
+
" labels = torch.tensor([example[\"label\"] for example in examples])\n",
|
863 |
+
" return {\"pixel_values\": pixel_values, \"labels\": labels}\n",
|
864 |
+
"\n",
|
865 |
+
"\n",
|
866 |
+
"def preprocess_logits_for_metrics(logits, labels):\n",
|
867 |
+
" \"\"\"\n",
|
868 |
+
" Original Trainer may have a memory leak.\n",
|
869 |
+
" This is a workaround to avoid storing too many tensors that are not needed.\n",
|
870 |
+
" \"\"\"\n",
|
871 |
+
" pred_ids = torch.argmax(logits, dim=-1)\n",
|
872 |
+
" return pred_ids\n",
|
873 |
+
"\n",
|
874 |
+
"ds[\"train\"].set_transform(train_transform)\n",
|
875 |
+
"ds[\"test\"].set_transform(test_transform)\n",
|
876 |
+
"\n",
|
877 |
+
"training_args = TrainingArguments(**CONFIG[\"training_args\"])\n",
|
878 |
+
"training_args.per_device_train_batch_size = batch\n",
|
879 |
+
"training_args.per_device_eval_batch_size = batch\n",
|
880 |
+
"training_args.hub_model_id = f\"amaye15/{model_name.replace('/','-')}-batch{batch}-lr{lr}-standford-dogs\"\n",
|
881 |
+
"\n",
|
882 |
+
"mlflow.start_run(run_name=f\"{model_name.replace('/','-')}-batch{batch}-lr{lr}\")\n",
|
883 |
+
"\n",
|
884 |
+
"trainer = Trainer(\n",
|
885 |
+
" model=model,\n",
|
886 |
+
" args=training_args,\n",
|
887 |
+
" train_dataset=ds[\"train\"],\n",
|
888 |
+
" eval_dataset=ds[\"test\"],\n",
|
889 |
+
" tokenizer=image_processor,\n",
|
890 |
+
" data_collator=collate_fn,\n",
|
891 |
+
" compute_metrics=compute_metrics,\n",
|
892 |
+
" # callbacks=[early_stopping_callback],\n",
|
893 |
+
" preprocess_logits_for_metrics=preprocess_logits_for_metrics,\n",
|
894 |
+
")\n",
|
895 |
+
"\n",
|
896 |
+
"# Train the model\n",
|
897 |
+
"trainer.train()\n",
|
898 |
+
"\n",
|
899 |
+
"trainer.push_to_hub()\n",
|
900 |
+
"\n",
|
901 |
+
"mlflow.end_run()"
|
902 |
+
]
|
903 |
+
}
|
904 |
+
],
|
905 |
+
"metadata": {
|
906 |
+
"kernelspec": {
|
907 |
+
"display_name": "env",
|
908 |
+
"language": "python",
|
909 |
+
"name": "python3"
|
910 |
+
},
|
911 |
+
"language_info": {
|
912 |
+
"codemirror_mode": {
|
913 |
+
"name": "ipython",
|
914 |
+
"version": 3
|
915 |
+
},
|
916 |
+
"file_extension": ".py",
|
917 |
+
"mimetype": "text/x-python",
|
918 |
+
"name": "python",
|
919 |
+
"nbconvert_exporter": "python",
|
920 |
+
"pygments_lexer": "ipython3",
|
921 |
+
"version": "3.12.3"
|
922 |
+
}
|
923 |
+
},
|
924 |
+
"nbformat": 4,
|
925 |
+
"nbformat_minor": 2
|
926 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34687c9f8264a2f41d3953440fb5f2f2b6c7f894111aeed6b3a7f30826b01fb2
|
3 |
+
size 5112
|