File size: 21,350 Bytes
802b465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DaViT model."""
import math
import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from collections import OrderedDict
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
# Ensure ConvEmbed, SpatialBlock, ChannelBlock, MySequential, etc., are defined before using them
from .configuration_davit import DaViTConfig
from transformers import AutoModel, AutoConfig
logger = logging.get_logger(__name__)
class LearnedAbsolutePositionEmbedding2D(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, embedding_dim=256, num_pos=50):
super().__init__()
self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
self.column_embeddings = nn.Embedding(
num_pos, embedding_dim - (embedding_dim // 2)
)
def forward(self, pixel_values):
"""
pixel_values: (batch_size, height, width, num_channels)
returns: (batch_size, height, width, embedding_dim * 2)
"""
if len(pixel_values.shape) != 4:
raise ValueError("pixel_values must be a 4D tensor")
height, width = pixel_values.shape[1:3]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
# (height, width, embedding_dim * 2)
pos = torch.cat(
[
x_emb.unsqueeze(0).repeat(height, 1, 1),
y_emb.unsqueeze(1).repeat(1, width, 1),
],
dim=-1,
)
# (embedding_dim * 2, height, width)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
# (batch_size, embedding_dim * 2, height, width)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
# (batch_size, height, width, embedding_dim * 2)
pos = pos.permute(0, 2, 3, 1)
return pos
class PositionalEmbeddingCosine1D(nn.Module):
"""
This class implements a very simple positional encoding. It follows closely
the encoder from the link below:
https://pytorch.org/tutorials/beginner/translation_transformer.html
Args:
embed_dim: The dimension of the embeddings.
dropout_prob: The dropout probability.
max_seq_len: The maximum length to precompute the positional encodings.
"""
def __init__(self, embed_dim: int = 512, max_seq_len: int = 1024) -> None:
super(PositionalEmbeddingCosine1D, self).__init__()
self.embed_dim = embed_dim
self.max_seq_len = max_seq_len
# Generate the sinusoidal arrays.
factor = math.log(10000)
denominator = torch.exp(
-factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim
)
# Matrix where rows correspond to a positional embedding as a function
# of the position index (i.e., the row index).
frequencies = (
torch.arange(0, self.max_seq_len).reshape(self.max_seq_len, 1) * denominator
)
pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
# Populate uneven entries.
pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
# Save the positional embeddings in a constant buffer.
self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
"""
Args:
seq_embeds: The sequence embeddings in order. Allowed size:
1. [T, D], where T is the length of the sequence, and D is the
frame embedding dimension.
2. [B, T, D], where B is the batch size and T and D are the
same as above.
Returns a tensor of with the same dimensions as the input: i.e.,
[1, T, D] or [T, D].
"""
shape_len = len(seq_embeds.shape)
assert 2 <= shape_len <= 3
len_seq = seq_embeds.size(-2)
assert len_seq <= self.max_seq_len
pos_embeds = self.pos_idx_to_embed[0 : seq_embeds.size(-2), :]
# Adapt pre-computed positional embeddings to the input.
if shape_len == 3:
pos_embeds = pos_embeds.view((1, pos_embeds.size(0), pos_embeds.size(1)))
return pos_embeds
class LearnedAbsolutePositionEmbedding1D(nn.Module):
"""
Learnable absolute positional embeddings for 1D sequences.
Args:
embed_dim: The dimension of the embeddings.
max_seq_len: The maximum length to precompute the positional encodings.
"""
def __init__(self, embedding_dim: int = 512, num_pos: int = 1024) -> None:
super(LearnedAbsolutePositionEmbedding1D, self).__init__()
self.embeddings = nn.Embedding(num_pos, embedding_dim)
self.num_pos = num_pos
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
"""
Args:
seq_embeds: The sequence embeddings in order. Allowed size:
1. [T, D], where T is the length of the sequence, and D is the
frame embedding dimension.
2. [B, T, D], where B is the batch size and T and D are the
same as above.
Returns a tensor of with the same dimensions as the input: i.e.,
[1, T, D] or [T, D].
"""
shape_len = len(seq_embeds.shape)
assert 2 <= shape_len <= 3
len_seq = seq_embeds.size(-2)
assert len_seq <= self.num_pos
# [T, D]
pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
# Adapt pre-computed positional embeddings to the input.
if shape_len == 3:
pos_embeds = pos_embeds.view((1, pos_embeds.size(0), pos_embeds.size(1)))
return pos_embeds
class MySequential(nn.Sequential):
def forward(self, *inputs):
for module in self._modules.values():
if type(inputs) == tuple:
inputs = module(*inputs)
else:
inputs = module(inputs)
return inputs
class PreNorm(nn.Module):
def __init__(self, norm, fn, drop_path=None):
super().__init__()
self.norm = norm
self.fn = fn
self.drop_path = drop_path
def forward(self, x, *args, **kwargs):
shortcut = x
if self.norm != None:
x, size = self.fn(self.norm(x), *args, **kwargs)
else:
x, size = self.fn(x, *args, **kwargs)
if self.drop_path:
x = self.drop_path(x)
x = shortcut + x
return x, size
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.net = nn.Sequential(
OrderedDict(
[
("fc1", nn.Linear(in_features, hidden_features)),
("act", act_layer()),
("fc2", nn.Linear(hidden_features, out_features)),
]
)
)
def forward(self, x, size):
return self.net(x), size
class DepthWiseConv2d(nn.Module):
def __init__(
self,
dim_in,
kernel_size,
padding,
stride,
bias=True,
):
super().__init__()
self.dw = nn.Conv2d(
dim_in,
dim_in,
kernel_size=kernel_size,
padding=padding,
groups=dim_in,
stride=stride,
bias=bias,
)
def forward(self, x, size):
B, N, C = x.shape
H, W = size
assert N == H * W
x = self.dw(x.transpose(1, 2).view(B, C, H, W))
size = (x.size(-2), x.size(-1))
x = x.flatten(2).transpose(1, 2)
return x, size
class ConvEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(
self,
patch_size=7,
in_chans=3,
embed_dim=64,
stride=4,
padding=2,
norm_layer=None,
pre_norm=True,
):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding
)
dim_norm = in_chans if pre_norm else embed_dim
self.norm = norm_layer(dim_norm) if norm_layer else None
self.pre_norm = pre_norm
def forward(self, x, size):
H, W = size
if len(x.size()) == 3:
if self.norm and self.pre_norm:
x = self.norm(x)
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
x = self.proj(x)
_, _, H, W = x.shape
x = rearrange(x, "b c h w -> b (h w) c")
if self.norm and not self.pre_norm:
x = self.norm(x)
return x, (H, W)
class ChannelAttention(nn.Module):
def __init__(self, dim, groups=8, qkv_bias=True):
super().__init__()
self.groups = groups
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
def forward(self, x, size):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.groups, C // self.groups)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * (float(N) ** -0.5)
attention = q.transpose(-1, -2) @ k
attention = attention.softmax(dim=-1)
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x, size
class ChannelBlock(nn.Module):
def __init__(
self,
dim,
groups,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
conv_at_attn=True,
conv_at_ffn=True,
):
super().__init__()
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.conv1 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
)
self.channel_attn = PreNorm(
norm_layer(dim),
ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
drop_path,
)
self.conv2 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
)
self.ffn = PreNorm(
norm_layer(dim),
Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
),
drop_path,
)
def forward(self, x, size):
if self.conv1:
x, size = self.conv1(x, size)
x, size = self.channel_attn(x, size)
if self.conv2:
x, size = self.conv2(x, size)
x, size = self.ffn(x, size)
return x, size
def window_partition(x, window_size: int):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = (
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
)
return windows
def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
B = batch_size
# this will cause onnx conversion failed for dynamic axis, because treated as constant
# int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(
B, H // window_size, W // window_size, window_size, window_size, -1
)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
def __init__(self, dim, num_heads, window_size, qkv_bias=True):
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = float(head_dim) ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, size):
H, W = size
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
x = window_partition(x, self.window_size)
x = x.view(-1, self.window_size * self.window_size, C)
# W-MSA/SW-MSA
# attn_windows = self.attn(x_windows)
B_, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
# merge windows
x = x.view(-1, self.window_size, self.window_size, C)
x = window_reverse(x, B, self.window_size, Hp, Wp)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
return x, size
class SpatialBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
window_size,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
conv_at_attn=True,
conv_at_ffn=True,
):
super().__init__()
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.conv1 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
)
self.window_attn = PreNorm(
norm_layer(dim),
WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
drop_path,
)
self.conv2 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
)
self.ffn = PreNorm(
norm_layer(dim),
Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
),
drop_path,
)
def forward(self, x, size):
if self.conv1:
x, size = self.conv1(x, size)
x, size = self.window_attn(x, size)
if self.conv2:
x, size = self.conv2(x, size)
x, size = self.ffn(x, size)
return x, size
# Define DaViT model class
class DaViTModel(PreTrainedModel):
config_class = DaViTConfig
def __init__(self, config: DaViTConfig):
super().__init__(config)
# self.num_classes = config.num_classes
self.embed_dims = config.embed_dims
self.num_heads = config.num_heads
self.num_groups = config.num_groups
self.num_stages = len(self.embed_dims)
self.enable_checkpoint = config.enable_checkpoint
assert self.num_stages == len(self.num_heads) == len(self.num_groups)
num_stages = len(config.embed_dims)
dpr = [
x.item()
for x in torch.linspace(0, config.drop_path_rate, sum(config.depths) * 2)
]
depth_offset = 0
convs = []
blocks = []
for i in range(num_stages):
conv_embed = ConvEmbed(
patch_size=config.patch_size[i],
stride=config.patch_stride[i],
padding=config.patch_padding[i],
in_chans=config.in_chans if i == 0 else self.embed_dims[i - 1],
embed_dim=self.embed_dims[i],
norm_layer=(
nn.LayerNorm
if config.norm_layer == "layer_norm"
else nn.BatchNorm2d
),
pre_norm=config.patch_prenorm[i],
)
convs.append(conv_embed)
block = MySequential(
*[
MySequential(
OrderedDict(
[
(
"spatial_block",
SpatialBlock(
self.embed_dims[i],
self.num_heads[i],
config.window_size,
drop_path_rate=dpr[depth_offset + j * 2],
qkv_bias=config.qkv_bias,
mlp_ratio=config.mlp_ratio,
conv_at_attn=config.conv_at_attn,
conv_at_ffn=config.conv_at_ffn,
),
),
(
"channel_block",
ChannelBlock(
self.embed_dims[i],
self.num_groups[i],
drop_path_rate=dpr[depth_offset + j * 2 + 1],
qkv_bias=config.qkv_bias,
mlp_ratio=config.mlp_ratio,
conv_at_attn=config.conv_at_attn,
conv_at_ffn=config.conv_at_ffn,
),
),
]
)
)
for j in range(config.depths[i])
]
)
blocks.append(block)
depth_offset += config.depths[i] * 2
self.convs = nn.ModuleList(convs)
self.blocks = nn.ModuleList(blocks)
# self.norms = (
# nn.LayerNorm(self.embed_dims[-1])
# if config.norm_layer == "layer_norm"
# else nn.BatchNorm2d(self.embed_dims[-1])
# )
self.avgpool = nn.AdaptiveAvgPool1d(1)
# self.head = (
# nn.Linear(self.embed_dims[-1], self.num_classes)
# if self.num_classes > 0
# else nn.Identity()
# )
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.02)
for name, _ in m.named_parameters():
if name in ["bias"]:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0)
def forward_features_unpool(self, x):
"""
forward until avg pooling
Args:
x (_type_): input image tensor
"""
input_size = (x.size(2), x.size(3))
for conv, block in zip(self.convs, self.blocks):
x, input_size = conv(x, input_size)
if self.enable_checkpoint:
x, input_size = checkpoint.checkpoint(block, x, input_size)
else:
x, input_size = block(x, input_size)
return x
def forward_features(self, x):
x = self.forward_features_unpool(x)
# (batch_size, num_tokens, token_dim)
x = self.avgpool(x.transpose(1, 2))
# (batch_size, 1, num_tokens)
x = torch.flatten(x, 1)
# x = self.norms(x)
return x
def forward(self, x):
x = self.forward_features(x)
# x = self.head(x)
return x
# Register the configuration and model
AutoConfig.register("davit", DaViTConfig)
AutoModel.register(DaViTConfig, DaViTModel)
|