Upload folder using huggingface_hub
Browse files- __init__.py +0 -0
- __pycache__/__init__.cpython-312.pyc +0 -0
- __pycache__/configuration_davit.cpython-312.pyc +0 -0
- __pycache__/modeling_davit.cpython-312.pyc +0 -0
- config.json +66 -0
- configuration_davit.py +50 -0
- model.safetensors +3 -0
- modeling_davit.py +665 -0
- test_davit_model.py +30 -0
__init__.py
ADDED
File without changes
|
__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (143 Bytes). View file
|
|
__pycache__/configuration_davit.cpython-312.pyc
ADDED
Binary file (1.67 kB). View file
|
|
__pycache__/modeling_davit.cpython-312.pyc
ADDED
Binary file (29.1 kB). View file
|
|
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DaViTModel"
|
4 |
+
],
|
5 |
+
"conv_at_attn": true,
|
6 |
+
"conv_at_ffn": true,
|
7 |
+
"depths": [
|
8 |
+
1,
|
9 |
+
1,
|
10 |
+
9,
|
11 |
+
1
|
12 |
+
],
|
13 |
+
"drop_path_rate": 0.1,
|
14 |
+
"embed_dims": [
|
15 |
+
256,
|
16 |
+
512,
|
17 |
+
1024,
|
18 |
+
2048
|
19 |
+
],
|
20 |
+
"enable_checkpoint": false,
|
21 |
+
"in_chans": 3,
|
22 |
+
"mlp_ratio": 4.0,
|
23 |
+
"model_type": "davit",
|
24 |
+
"norm_layer": "layer_norm",
|
25 |
+
"num_groups": [
|
26 |
+
8,
|
27 |
+
16,
|
28 |
+
32,
|
29 |
+
64
|
30 |
+
],
|
31 |
+
"num_heads": [
|
32 |
+
8,
|
33 |
+
16,
|
34 |
+
32,
|
35 |
+
64
|
36 |
+
],
|
37 |
+
"patch_padding": [
|
38 |
+
3,
|
39 |
+
1,
|
40 |
+
1,
|
41 |
+
1
|
42 |
+
],
|
43 |
+
"patch_prenorm": [
|
44 |
+
false,
|
45 |
+
true,
|
46 |
+
true,
|
47 |
+
true
|
48 |
+
],
|
49 |
+
"patch_size": [
|
50 |
+
7,
|
51 |
+
3,
|
52 |
+
3,
|
53 |
+
3
|
54 |
+
],
|
55 |
+
"patch_stride": [
|
56 |
+
4,
|
57 |
+
2,
|
58 |
+
2,
|
59 |
+
2
|
60 |
+
],
|
61 |
+
"projection_dim": 1024,
|
62 |
+
"qkv_bias": true,
|
63 |
+
"torch_dtype": "float32",
|
64 |
+
"transformers_version": "4.43.3",
|
65 |
+
"window_size": 12
|
66 |
+
}
|
configuration_davit.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
# Define configuration class
|
5 |
+
class DaViTConfig(PretrainedConfig):
|
6 |
+
model_type = "davit"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
in_chans=3,
|
11 |
+
# num_classes=1000,
|
12 |
+
depths=(1, 1, 9, 1),
|
13 |
+
patch_size=(7, 3, 3, 3),
|
14 |
+
patch_stride=(4, 2, 2, 2),
|
15 |
+
patch_padding=(3, 1, 1, 1),
|
16 |
+
patch_prenorm=(False, True, True, True),
|
17 |
+
embed_dims=(256, 512, 1024, 2048),
|
18 |
+
num_heads=(8, 16, 32, 64),
|
19 |
+
num_groups=(8, 16, 32, 64),
|
20 |
+
window_size=12,
|
21 |
+
mlp_ratio=4.0,
|
22 |
+
qkv_bias=True,
|
23 |
+
drop_path_rate=0.1,
|
24 |
+
norm_layer="layer_norm",
|
25 |
+
enable_checkpoint=False,
|
26 |
+
conv_at_attn=True,
|
27 |
+
conv_at_ffn=True,
|
28 |
+
projection_dim=1024,
|
29 |
+
**kwargs
|
30 |
+
):
|
31 |
+
super().__init__(**kwargs)
|
32 |
+
self.in_chans = in_chans
|
33 |
+
# self.num_classes = num_classes # Classes remove for AutoModel
|
34 |
+
self.depths = depths
|
35 |
+
self.patch_size = patch_size
|
36 |
+
self.patch_stride = patch_stride
|
37 |
+
self.patch_padding = patch_padding
|
38 |
+
self.patch_prenorm = patch_prenorm
|
39 |
+
self.embed_dims = embed_dims
|
40 |
+
self.num_heads = num_heads
|
41 |
+
self.num_groups = num_groups
|
42 |
+
self.window_size = window_size
|
43 |
+
self.mlp_ratio = mlp_ratio
|
44 |
+
self.qkv_bias = qkv_bias
|
45 |
+
self.drop_path_rate = drop_path_rate
|
46 |
+
self.norm_layer = norm_layer
|
47 |
+
self.enable_checkpoint = enable_checkpoint
|
48 |
+
self.conv_at_attn = conv_at_attn
|
49 |
+
self.conv_at_ffn = conv_at_ffn
|
50 |
+
self.projection_dim = projection_dim
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:315a18b687f56bdc95c40f81607a910b7ccbf24f01edb7f1dfca00f4ba5afaee
|
3 |
+
size 1442592416
|
modeling_davit.py
ADDED
@@ -0,0 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" PyTorch DaViT model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint as checkpoint
|
25 |
+
from collections import OrderedDict
|
26 |
+
from einops import rearrange
|
27 |
+
from timm.models.layers import DropPath, trunc_normal_
|
28 |
+
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.utils import logging
|
31 |
+
|
32 |
+
# Ensure ConvEmbed, SpatialBlock, ChannelBlock, MySequential, etc., are defined before using them
|
33 |
+
from .configuration_davit import DaViTConfig
|
34 |
+
|
35 |
+
from transformers import AutoModel, AutoConfig
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
class LearnedAbsolutePositionEmbedding2D(nn.Module):
|
41 |
+
"""
|
42 |
+
This module learns positional embeddings up to a fixed maximum size.
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, embedding_dim=256, num_pos=50):
|
46 |
+
super().__init__()
|
47 |
+
self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
|
48 |
+
self.column_embeddings = nn.Embedding(
|
49 |
+
num_pos, embedding_dim - (embedding_dim // 2)
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, pixel_values):
|
53 |
+
"""
|
54 |
+
pixel_values: (batch_size, height, width, num_channels)
|
55 |
+
returns: (batch_size, height, width, embedding_dim * 2)
|
56 |
+
"""
|
57 |
+
if len(pixel_values.shape) != 4:
|
58 |
+
raise ValueError("pixel_values must be a 4D tensor")
|
59 |
+
height, width = pixel_values.shape[1:3]
|
60 |
+
width_values = torch.arange(width, device=pixel_values.device)
|
61 |
+
height_values = torch.arange(height, device=pixel_values.device)
|
62 |
+
x_emb = self.column_embeddings(width_values)
|
63 |
+
y_emb = self.row_embeddings(height_values)
|
64 |
+
# (height, width, embedding_dim * 2)
|
65 |
+
pos = torch.cat(
|
66 |
+
[
|
67 |
+
x_emb.unsqueeze(0).repeat(height, 1, 1),
|
68 |
+
y_emb.unsqueeze(1).repeat(1, width, 1),
|
69 |
+
],
|
70 |
+
dim=-1,
|
71 |
+
)
|
72 |
+
# (embedding_dim * 2, height, width)
|
73 |
+
pos = pos.permute(2, 0, 1)
|
74 |
+
pos = pos.unsqueeze(0)
|
75 |
+
# (batch_size, embedding_dim * 2, height, width)
|
76 |
+
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
|
77 |
+
# (batch_size, height, width, embedding_dim * 2)
|
78 |
+
pos = pos.permute(0, 2, 3, 1)
|
79 |
+
return pos
|
80 |
+
|
81 |
+
|
82 |
+
class PositionalEmbeddingCosine1D(nn.Module):
|
83 |
+
"""
|
84 |
+
This class implements a very simple positional encoding. It follows closely
|
85 |
+
the encoder from the link below:
|
86 |
+
https://pytorch.org/tutorials/beginner/translation_transformer.html
|
87 |
+
|
88 |
+
Args:
|
89 |
+
embed_dim: The dimension of the embeddings.
|
90 |
+
dropout_prob: The dropout probability.
|
91 |
+
max_seq_len: The maximum length to precompute the positional encodings.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, embed_dim: int = 512, max_seq_len: int = 1024) -> None:
|
95 |
+
super(PositionalEmbeddingCosine1D, self).__init__()
|
96 |
+
self.embed_dim = embed_dim
|
97 |
+
self.max_seq_len = max_seq_len
|
98 |
+
# Generate the sinusoidal arrays.
|
99 |
+
factor = math.log(10000)
|
100 |
+
denominator = torch.exp(
|
101 |
+
-factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim
|
102 |
+
)
|
103 |
+
# Matrix where rows correspond to a positional embedding as a function
|
104 |
+
# of the position index (i.e., the row index).
|
105 |
+
frequencies = (
|
106 |
+
torch.arange(0, self.max_seq_len).reshape(self.max_seq_len, 1) * denominator
|
107 |
+
)
|
108 |
+
pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
|
109 |
+
# Populate uneven entries.
|
110 |
+
pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
|
111 |
+
pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
|
112 |
+
# Save the positional embeddings in a constant buffer.
|
113 |
+
self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
|
114 |
+
|
115 |
+
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
|
116 |
+
"""
|
117 |
+
Args:
|
118 |
+
seq_embeds: The sequence embeddings in order. Allowed size:
|
119 |
+
1. [T, D], where T is the length of the sequence, and D is the
|
120 |
+
frame embedding dimension.
|
121 |
+
2. [B, T, D], where B is the batch size and T and D are the
|
122 |
+
same as above.
|
123 |
+
|
124 |
+
Returns a tensor of with the same dimensions as the input: i.e.,
|
125 |
+
[1, T, D] or [T, D].
|
126 |
+
"""
|
127 |
+
shape_len = len(seq_embeds.shape)
|
128 |
+
assert 2 <= shape_len <= 3
|
129 |
+
len_seq = seq_embeds.size(-2)
|
130 |
+
assert len_seq <= self.max_seq_len
|
131 |
+
pos_embeds = self.pos_idx_to_embed[0 : seq_embeds.size(-2), :]
|
132 |
+
# Adapt pre-computed positional embeddings to the input.
|
133 |
+
if shape_len == 3:
|
134 |
+
pos_embeds = pos_embeds.view((1, pos_embeds.size(0), pos_embeds.size(1)))
|
135 |
+
return pos_embeds
|
136 |
+
|
137 |
+
|
138 |
+
class LearnedAbsolutePositionEmbedding1D(nn.Module):
|
139 |
+
"""
|
140 |
+
Learnable absolute positional embeddings for 1D sequences.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
embed_dim: The dimension of the embeddings.
|
144 |
+
max_seq_len: The maximum length to precompute the positional encodings.
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self, embedding_dim: int = 512, num_pos: int = 1024) -> None:
|
148 |
+
super(LearnedAbsolutePositionEmbedding1D, self).__init__()
|
149 |
+
self.embeddings = nn.Embedding(num_pos, embedding_dim)
|
150 |
+
self.num_pos = num_pos
|
151 |
+
|
152 |
+
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
|
153 |
+
"""
|
154 |
+
Args:
|
155 |
+
seq_embeds: The sequence embeddings in order. Allowed size:
|
156 |
+
1. [T, D], where T is the length of the sequence, and D is the
|
157 |
+
frame embedding dimension.
|
158 |
+
2. [B, T, D], where B is the batch size and T and D are the
|
159 |
+
same as above.
|
160 |
+
|
161 |
+
Returns a tensor of with the same dimensions as the input: i.e.,
|
162 |
+
[1, T, D] or [T, D].
|
163 |
+
"""
|
164 |
+
shape_len = len(seq_embeds.shape)
|
165 |
+
assert 2 <= shape_len <= 3
|
166 |
+
len_seq = seq_embeds.size(-2)
|
167 |
+
assert len_seq <= self.num_pos
|
168 |
+
# [T, D]
|
169 |
+
pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
|
170 |
+
# Adapt pre-computed positional embeddings to the input.
|
171 |
+
if shape_len == 3:
|
172 |
+
pos_embeds = pos_embeds.view((1, pos_embeds.size(0), pos_embeds.size(1)))
|
173 |
+
return pos_embeds
|
174 |
+
|
175 |
+
|
176 |
+
class MySequential(nn.Sequential):
|
177 |
+
def forward(self, *inputs):
|
178 |
+
for module in self._modules.values():
|
179 |
+
if type(inputs) == tuple:
|
180 |
+
inputs = module(*inputs)
|
181 |
+
else:
|
182 |
+
inputs = module(inputs)
|
183 |
+
return inputs
|
184 |
+
|
185 |
+
|
186 |
+
class PreNorm(nn.Module):
|
187 |
+
def __init__(self, norm, fn, drop_path=None):
|
188 |
+
super().__init__()
|
189 |
+
self.norm = norm
|
190 |
+
self.fn = fn
|
191 |
+
self.drop_path = drop_path
|
192 |
+
|
193 |
+
def forward(self, x, *args, **kwargs):
|
194 |
+
shortcut = x
|
195 |
+
if self.norm != None:
|
196 |
+
x, size = self.fn(self.norm(x), *args, **kwargs)
|
197 |
+
else:
|
198 |
+
x, size = self.fn(x, *args, **kwargs)
|
199 |
+
|
200 |
+
if self.drop_path:
|
201 |
+
x = self.drop_path(x)
|
202 |
+
|
203 |
+
x = shortcut + x
|
204 |
+
|
205 |
+
return x, size
|
206 |
+
|
207 |
+
|
208 |
+
class Mlp(nn.Module):
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
in_features,
|
212 |
+
hidden_features=None,
|
213 |
+
out_features=None,
|
214 |
+
act_layer=nn.GELU,
|
215 |
+
):
|
216 |
+
super().__init__()
|
217 |
+
out_features = out_features or in_features
|
218 |
+
hidden_features = hidden_features or in_features
|
219 |
+
self.net = nn.Sequential(
|
220 |
+
OrderedDict(
|
221 |
+
[
|
222 |
+
("fc1", nn.Linear(in_features, hidden_features)),
|
223 |
+
("act", act_layer()),
|
224 |
+
("fc2", nn.Linear(hidden_features, out_features)),
|
225 |
+
]
|
226 |
+
)
|
227 |
+
)
|
228 |
+
|
229 |
+
def forward(self, x, size):
|
230 |
+
return self.net(x), size
|
231 |
+
|
232 |
+
|
233 |
+
class DepthWiseConv2d(nn.Module):
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
dim_in,
|
237 |
+
kernel_size,
|
238 |
+
padding,
|
239 |
+
stride,
|
240 |
+
bias=True,
|
241 |
+
):
|
242 |
+
super().__init__()
|
243 |
+
self.dw = nn.Conv2d(
|
244 |
+
dim_in,
|
245 |
+
dim_in,
|
246 |
+
kernel_size=kernel_size,
|
247 |
+
padding=padding,
|
248 |
+
groups=dim_in,
|
249 |
+
stride=stride,
|
250 |
+
bias=bias,
|
251 |
+
)
|
252 |
+
|
253 |
+
def forward(self, x, size):
|
254 |
+
B, N, C = x.shape
|
255 |
+
H, W = size
|
256 |
+
assert N == H * W
|
257 |
+
|
258 |
+
x = self.dw(x.transpose(1, 2).view(B, C, H, W))
|
259 |
+
size = (x.size(-2), x.size(-1))
|
260 |
+
x = x.flatten(2).transpose(1, 2)
|
261 |
+
return x, size
|
262 |
+
|
263 |
+
|
264 |
+
class ConvEmbed(nn.Module):
|
265 |
+
"""Image to Patch Embedding"""
|
266 |
+
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
patch_size=7,
|
270 |
+
in_chans=3,
|
271 |
+
embed_dim=64,
|
272 |
+
stride=4,
|
273 |
+
padding=2,
|
274 |
+
norm_layer=None,
|
275 |
+
pre_norm=True,
|
276 |
+
):
|
277 |
+
super().__init__()
|
278 |
+
self.patch_size = patch_size
|
279 |
+
|
280 |
+
self.proj = nn.Conv2d(
|
281 |
+
in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding
|
282 |
+
)
|
283 |
+
|
284 |
+
dim_norm = in_chans if pre_norm else embed_dim
|
285 |
+
self.norm = norm_layer(dim_norm) if norm_layer else None
|
286 |
+
|
287 |
+
self.pre_norm = pre_norm
|
288 |
+
|
289 |
+
def forward(self, x, size):
|
290 |
+
H, W = size
|
291 |
+
if len(x.size()) == 3:
|
292 |
+
if self.norm and self.pre_norm:
|
293 |
+
x = self.norm(x)
|
294 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
|
295 |
+
|
296 |
+
x = self.proj(x)
|
297 |
+
|
298 |
+
_, _, H, W = x.shape
|
299 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
300 |
+
if self.norm and not self.pre_norm:
|
301 |
+
x = self.norm(x)
|
302 |
+
|
303 |
+
return x, (H, W)
|
304 |
+
|
305 |
+
|
306 |
+
class ChannelAttention(nn.Module):
|
307 |
+
|
308 |
+
def __init__(self, dim, groups=8, qkv_bias=True):
|
309 |
+
super().__init__()
|
310 |
+
|
311 |
+
self.groups = groups
|
312 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
313 |
+
self.proj = nn.Linear(dim, dim)
|
314 |
+
|
315 |
+
def forward(self, x, size):
|
316 |
+
B, N, C = x.shape
|
317 |
+
|
318 |
+
qkv = (
|
319 |
+
self.qkv(x)
|
320 |
+
.reshape(B, N, 3, self.groups, C // self.groups)
|
321 |
+
.permute(2, 0, 3, 1, 4)
|
322 |
+
)
|
323 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
324 |
+
|
325 |
+
q = q * (float(N) ** -0.5)
|
326 |
+
attention = q.transpose(-1, -2) @ k
|
327 |
+
attention = attention.softmax(dim=-1)
|
328 |
+
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
|
329 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
330 |
+
x = self.proj(x)
|
331 |
+
return x, size
|
332 |
+
|
333 |
+
|
334 |
+
class ChannelBlock(nn.Module):
|
335 |
+
|
336 |
+
def __init__(
|
337 |
+
self,
|
338 |
+
dim,
|
339 |
+
groups,
|
340 |
+
mlp_ratio=4.0,
|
341 |
+
qkv_bias=True,
|
342 |
+
drop_path_rate=0.0,
|
343 |
+
act_layer=nn.GELU,
|
344 |
+
norm_layer=nn.LayerNorm,
|
345 |
+
conv_at_attn=True,
|
346 |
+
conv_at_ffn=True,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
|
350 |
+
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
351 |
+
|
352 |
+
self.conv1 = (
|
353 |
+
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
|
354 |
+
)
|
355 |
+
self.channel_attn = PreNorm(
|
356 |
+
norm_layer(dim),
|
357 |
+
ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
|
358 |
+
drop_path,
|
359 |
+
)
|
360 |
+
self.conv2 = (
|
361 |
+
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
|
362 |
+
)
|
363 |
+
self.ffn = PreNorm(
|
364 |
+
norm_layer(dim),
|
365 |
+
Mlp(
|
366 |
+
in_features=dim,
|
367 |
+
hidden_features=int(dim * mlp_ratio),
|
368 |
+
act_layer=act_layer,
|
369 |
+
),
|
370 |
+
drop_path,
|
371 |
+
)
|
372 |
+
|
373 |
+
def forward(self, x, size):
|
374 |
+
if self.conv1:
|
375 |
+
x, size = self.conv1(x, size)
|
376 |
+
x, size = self.channel_attn(x, size)
|
377 |
+
|
378 |
+
if self.conv2:
|
379 |
+
x, size = self.conv2(x, size)
|
380 |
+
x, size = self.ffn(x, size)
|
381 |
+
|
382 |
+
return x, size
|
383 |
+
|
384 |
+
|
385 |
+
def window_partition(x, window_size: int):
|
386 |
+
B, H, W, C = x.shape
|
387 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
388 |
+
windows = (
|
389 |
+
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
390 |
+
)
|
391 |
+
return windows
|
392 |
+
|
393 |
+
|
394 |
+
def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
|
395 |
+
B = batch_size
|
396 |
+
# this will cause onnx conversion failed for dynamic axis, because treated as constant
|
397 |
+
# int(windows.shape[0] / (H * W / window_size / window_size))
|
398 |
+
x = windows.view(
|
399 |
+
B, H // window_size, W // window_size, window_size, window_size, -1
|
400 |
+
)
|
401 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
402 |
+
return x
|
403 |
+
|
404 |
+
|
405 |
+
class WindowAttention(nn.Module):
|
406 |
+
def __init__(self, dim, num_heads, window_size, qkv_bias=True):
|
407 |
+
|
408 |
+
super().__init__()
|
409 |
+
self.dim = dim
|
410 |
+
self.window_size = window_size
|
411 |
+
self.num_heads = num_heads
|
412 |
+
head_dim = dim // num_heads
|
413 |
+
self.scale = float(head_dim) ** -0.5
|
414 |
+
|
415 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
416 |
+
self.proj = nn.Linear(dim, dim)
|
417 |
+
|
418 |
+
self.softmax = nn.Softmax(dim=-1)
|
419 |
+
|
420 |
+
def forward(self, x, size):
|
421 |
+
|
422 |
+
H, W = size
|
423 |
+
B, L, C = x.shape
|
424 |
+
assert L == H * W, "input feature has wrong size"
|
425 |
+
|
426 |
+
x = x.view(B, H, W, C)
|
427 |
+
|
428 |
+
pad_l = pad_t = 0
|
429 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
430 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
431 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
432 |
+
_, Hp, Wp, _ = x.shape
|
433 |
+
|
434 |
+
x = window_partition(x, self.window_size)
|
435 |
+
x = x.view(-1, self.window_size * self.window_size, C)
|
436 |
+
|
437 |
+
# W-MSA/SW-MSA
|
438 |
+
# attn_windows = self.attn(x_windows)
|
439 |
+
|
440 |
+
B_, N, C = x.shape
|
441 |
+
qkv = (
|
442 |
+
self.qkv(x)
|
443 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
444 |
+
.permute(2, 0, 3, 1, 4)
|
445 |
+
)
|
446 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
447 |
+
|
448 |
+
q = q * self.scale
|
449 |
+
attn = q @ k.transpose(-2, -1)
|
450 |
+
attn = self.softmax(attn)
|
451 |
+
|
452 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
453 |
+
x = self.proj(x)
|
454 |
+
|
455 |
+
# merge windows
|
456 |
+
x = x.view(-1, self.window_size, self.window_size, C)
|
457 |
+
x = window_reverse(x, B, self.window_size, Hp, Wp)
|
458 |
+
|
459 |
+
if pad_r > 0 or pad_b > 0:
|
460 |
+
x = x[:, :H, :W, :].contiguous()
|
461 |
+
|
462 |
+
x = x.view(B, H * W, C)
|
463 |
+
|
464 |
+
return x, size
|
465 |
+
|
466 |
+
|
467 |
+
class SpatialBlock(nn.Module):
|
468 |
+
|
469 |
+
def __init__(
|
470 |
+
self,
|
471 |
+
dim,
|
472 |
+
num_heads,
|
473 |
+
window_size,
|
474 |
+
mlp_ratio=4.0,
|
475 |
+
qkv_bias=True,
|
476 |
+
drop_path_rate=0.0,
|
477 |
+
act_layer=nn.GELU,
|
478 |
+
norm_layer=nn.LayerNorm,
|
479 |
+
conv_at_attn=True,
|
480 |
+
conv_at_ffn=True,
|
481 |
+
):
|
482 |
+
super().__init__()
|
483 |
+
|
484 |
+
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
485 |
+
|
486 |
+
self.conv1 = (
|
487 |
+
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
|
488 |
+
)
|
489 |
+
self.window_attn = PreNorm(
|
490 |
+
norm_layer(dim),
|
491 |
+
WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
|
492 |
+
drop_path,
|
493 |
+
)
|
494 |
+
self.conv2 = (
|
495 |
+
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
|
496 |
+
)
|
497 |
+
self.ffn = PreNorm(
|
498 |
+
norm_layer(dim),
|
499 |
+
Mlp(
|
500 |
+
in_features=dim,
|
501 |
+
hidden_features=int(dim * mlp_ratio),
|
502 |
+
act_layer=act_layer,
|
503 |
+
),
|
504 |
+
drop_path,
|
505 |
+
)
|
506 |
+
|
507 |
+
def forward(self, x, size):
|
508 |
+
if self.conv1:
|
509 |
+
x, size = self.conv1(x, size)
|
510 |
+
x, size = self.window_attn(x, size)
|
511 |
+
|
512 |
+
if self.conv2:
|
513 |
+
x, size = self.conv2(x, size)
|
514 |
+
x, size = self.ffn(x, size)
|
515 |
+
return x, size
|
516 |
+
|
517 |
+
|
518 |
+
# Define DaViT model class
|
519 |
+
class DaViTModel(PreTrainedModel):
|
520 |
+
config_class = DaViTConfig
|
521 |
+
|
522 |
+
def __init__(self, config: DaViTConfig):
|
523 |
+
super().__init__(config)
|
524 |
+
|
525 |
+
# self.num_classes = config.num_classes
|
526 |
+
self.embed_dims = config.embed_dims
|
527 |
+
self.num_heads = config.num_heads
|
528 |
+
self.num_groups = config.num_groups
|
529 |
+
self.num_stages = len(self.embed_dims)
|
530 |
+
self.enable_checkpoint = config.enable_checkpoint
|
531 |
+
assert self.num_stages == len(self.num_heads) == len(self.num_groups)
|
532 |
+
|
533 |
+
num_stages = len(config.embed_dims)
|
534 |
+
dpr = [
|
535 |
+
x.item()
|
536 |
+
for x in torch.linspace(0, config.drop_path_rate, sum(config.depths) * 2)
|
537 |
+
]
|
538 |
+
|
539 |
+
depth_offset = 0
|
540 |
+
convs = []
|
541 |
+
blocks = []
|
542 |
+
for i in range(num_stages):
|
543 |
+
conv_embed = ConvEmbed(
|
544 |
+
patch_size=config.patch_size[i],
|
545 |
+
stride=config.patch_stride[i],
|
546 |
+
padding=config.patch_padding[i],
|
547 |
+
in_chans=config.in_chans if i == 0 else self.embed_dims[i - 1],
|
548 |
+
embed_dim=self.embed_dims[i],
|
549 |
+
norm_layer=(
|
550 |
+
nn.LayerNorm
|
551 |
+
if config.norm_layer == "layer_norm"
|
552 |
+
else nn.BatchNorm2d
|
553 |
+
),
|
554 |
+
pre_norm=config.patch_prenorm[i],
|
555 |
+
)
|
556 |
+
convs.append(conv_embed)
|
557 |
+
|
558 |
+
block = MySequential(
|
559 |
+
*[
|
560 |
+
MySequential(
|
561 |
+
OrderedDict(
|
562 |
+
[
|
563 |
+
(
|
564 |
+
"spatial_block",
|
565 |
+
SpatialBlock(
|
566 |
+
self.embed_dims[i],
|
567 |
+
self.num_heads[i],
|
568 |
+
config.window_size,
|
569 |
+
drop_path_rate=dpr[depth_offset + j * 2],
|
570 |
+
qkv_bias=config.qkv_bias,
|
571 |
+
mlp_ratio=config.mlp_ratio,
|
572 |
+
conv_at_attn=config.conv_at_attn,
|
573 |
+
conv_at_ffn=config.conv_at_ffn,
|
574 |
+
),
|
575 |
+
),
|
576 |
+
(
|
577 |
+
"channel_block",
|
578 |
+
ChannelBlock(
|
579 |
+
self.embed_dims[i],
|
580 |
+
self.num_groups[i],
|
581 |
+
drop_path_rate=dpr[depth_offset + j * 2 + 1],
|
582 |
+
qkv_bias=config.qkv_bias,
|
583 |
+
mlp_ratio=config.mlp_ratio,
|
584 |
+
conv_at_attn=config.conv_at_attn,
|
585 |
+
conv_at_ffn=config.conv_at_ffn,
|
586 |
+
),
|
587 |
+
),
|
588 |
+
]
|
589 |
+
)
|
590 |
+
)
|
591 |
+
for j in range(config.depths[i])
|
592 |
+
]
|
593 |
+
)
|
594 |
+
blocks.append(block)
|
595 |
+
depth_offset += config.depths[i] * 2
|
596 |
+
|
597 |
+
self.convs = nn.ModuleList(convs)
|
598 |
+
self.blocks = nn.ModuleList(blocks)
|
599 |
+
|
600 |
+
self.norms = (
|
601 |
+
nn.LayerNorm(self.embed_dims[-1])
|
602 |
+
if config.norm_layer == "layer_norm"
|
603 |
+
else nn.BatchNorm2d(self.embed_dims[-1])
|
604 |
+
)
|
605 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
606 |
+
# self.head = (
|
607 |
+
# nn.Linear(self.embed_dims[-1], self.num_classes)
|
608 |
+
# if self.num_classes > 0
|
609 |
+
# else nn.Identity()
|
610 |
+
# )
|
611 |
+
|
612 |
+
self.apply(self._init_weights)
|
613 |
+
|
614 |
+
def _init_weights(self, m):
|
615 |
+
if isinstance(m, nn.Linear):
|
616 |
+
trunc_normal_(m.weight, std=0.02)
|
617 |
+
if m.bias is not None:
|
618 |
+
nn.init.constant_(m.bias, 0)
|
619 |
+
elif isinstance(m, nn.Conv2d):
|
620 |
+
nn.init.normal_(m.weight, std=0.02)
|
621 |
+
for name, _ in m.named_parameters():
|
622 |
+
if name in ["bias"]:
|
623 |
+
nn.init.constant_(m.bias, 0)
|
624 |
+
elif isinstance(m, nn.LayerNorm):
|
625 |
+
nn.init.constant_(m.weight, 1.0)
|
626 |
+
nn.init.constant_(m.bias, 0)
|
627 |
+
elif isinstance(m, nn.BatchNorm2d):
|
628 |
+
nn.init.constant_(m.weight, 1.0)
|
629 |
+
nn.init.constant_(m.bias, 0)
|
630 |
+
|
631 |
+
def forward_features_unpool(self, x):
|
632 |
+
"""
|
633 |
+
forward until avg pooling
|
634 |
+
Args:
|
635 |
+
x (_type_): input image tensor
|
636 |
+
"""
|
637 |
+
input_size = (x.size(2), x.size(3))
|
638 |
+
for conv, block in zip(self.convs, self.blocks):
|
639 |
+
x, input_size = conv(x, input_size)
|
640 |
+
if self.enable_checkpoint:
|
641 |
+
x, input_size = checkpoint.checkpoint(block, x, input_size)
|
642 |
+
else:
|
643 |
+
x, input_size = block(x, input_size)
|
644 |
+
return x
|
645 |
+
|
646 |
+
def forward_features(self, x):
|
647 |
+
x = self.forward_features_unpool(x)
|
648 |
+
|
649 |
+
# (batch_size, num_tokens, token_dim)
|
650 |
+
x = self.avgpool(x.transpose(1, 2))
|
651 |
+
# (batch_size, 1, num_tokens)
|
652 |
+
x = torch.flatten(x, 1)
|
653 |
+
x = self.norms(x)
|
654 |
+
|
655 |
+
return x
|
656 |
+
|
657 |
+
def forward(self, x):
|
658 |
+
x = self.forward_features(x)
|
659 |
+
# x = self.head(x)
|
660 |
+
return x
|
661 |
+
|
662 |
+
|
663 |
+
# Register the configuration and model
|
664 |
+
AutoConfig.register("davit", DaViTConfig)
|
665 |
+
AutoModel.register(DaViTConfig, DaViTModel)
|
test_davit_model.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoConfig, AutoModel
|
3 |
+
from .configuration_davit import DaViTConfig
|
4 |
+
from .modeling_davit import DaViTModel
|
5 |
+
|
6 |
+
# Register the configuration and model
|
7 |
+
AutoConfig.register("davit", DaViTConfig)
|
8 |
+
AutoModel.register(DaViTConfig, DaViTModel)
|
9 |
+
|
10 |
+
# Step 1: Create a configuration object
|
11 |
+
config = DaViTConfig()
|
12 |
+
|
13 |
+
# Step 2: Create a model object
|
14 |
+
model = AutoModel.from_config(config)
|
15 |
+
|
16 |
+
# Step 3: Run a forward pass
|
17 |
+
# Generate a random sample input tensor with shape (batch_size, channels, height, width)
|
18 |
+
batch_size = 2
|
19 |
+
channels = 3
|
20 |
+
height = 224
|
21 |
+
width = 224
|
22 |
+
sample_input = torch.randn(batch_size, channels, height, width)
|
23 |
+
|
24 |
+
# Pass the sample input through the model
|
25 |
+
output = model(sample_input)
|
26 |
+
|
27 |
+
# Print the output shape
|
28 |
+
print(f"Output shape: {output.shape}")
|
29 |
+
|
30 |
+
# Expected output shape: (batch_size, projection_dim)
|