--- license: mit language: - en datasets: climate_fever tags: - fact-checking - climate - text entailment --- This model fine-tuned [ClimateBert](https://huggingface.co./climatebert/distilroberta-base-climate-f) on the textual entailment task using Climate FEVER data. Given (claim, evidence) pairs, the model predicts support (entailment), refute (contradict), or not enough info (neutral). The model has 67% validation accuracy. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained("amandakonet/climatebert-fact-checking") tokenizer = AutoTokenizer.from_pretrained("amandakonet/climatebert-fact-checking") features = tokenizer(['Beginning in 2005, however, polar ice modestly receded for several years'], ['Polar Discovery "Continued Sea Ice Decline in 2005'], padding='max_length', truncation=True, return_tensors="pt", max_length=512) model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['entailment', 'contradiction', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels) ```