Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 264.65 +/- 16.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a7a175072e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a7a17507370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a7a17507400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a7a17507490>", "_build": "<function ActorCriticPolicy._build at 0x7a7a17507520>", "forward": "<function ActorCriticPolicy.forward at 0x7a7a175075b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a7a17507640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a7a175076d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a7a17507760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a7a175077f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a7a17507880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a7a17507910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a79b9227d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732516229154151506, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAICW4b3+4aQ+SIyTPT5uX75gJho98HL0PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGz9GwzLwF2MAWyUTRgBjAF0lEdAnGKruUliSnV9lChoBkdAUJ9f5ULlWGgHS+xoCEdAnGR/ozN2T3V9lChoBkdALehnBciW3WgHS+FoCEdAnGZMMZxaPnV9lChoBkdAcM5xLkCFK2gHTTEBaAhHQJxqAWIoE0V1fZQoaAZHQGvOg1vVEuxoB01SAWgIR0Cca+JlrdnCdX2UKGgGR0Bsnx9iMHbAaAdNMgFoCEdAnG2o8U21lXV9lChoBkdAcU5CFK02L2gHTUoBaAhHQJxvmRQrMC91fZQoaAZHQGujjfvWpZRoB00rAWgIR0CcconlXA/LdX2UKGgGR0BxZWgctGutaAdNDQFoCEdAnHQL+o99t3V9lChoBkdAckRPX05EMWgHTWIBaAhHQJx2Gq94/u91fZQoaAZHQHHBFpblijNoB00uAWgIR0CceQYOlO45dX2UKGgGR0BwMCO+7Dl6aAdL+2gIR0Ccen52Qnx8dX2UKGgGR0ByMOpKjBVNaAdNYQFoCEdAnHx9oSL613V9lChoBkdAcCGD9wWFe2gHTSQBaAhHQJx/Uh8pkPN1fZQoaAZHQHEi+dK/VRVoB0v4aAhHQJyAsn9ehPF1fZQoaAZHQHN7NRFZxJdoB00yAWgIR0CcgnHVwxWUdX2UKGgGR0Btk0H4XXRPaAdNJwFoCEdAnIQW/rSmZXV9lChoBkdAckuCXhOxjmgHTSsBaAhHQJyHBhDw6Qx1fZQoaAZHQG/0dfb9If9oB00LAWgIR0CciJChN/OMdX2UKGgGR0BI4VQqI7/5aAdL6WgIR0CcieywOe8PdX2UKGgGR0AleWDYh+vyaAdL0mgIR0Cciw5DJEH/dX2UKGgGR0ByJbxsl9jPaAdNMgFoCEdAnI4M3ZPEbnV9lChoBkdAcU6nHNorWmgHTTwBaAhHQJyP4CV8kUt1fZQoaAZHQGvT9nK4hEBoB00UAWgIR0CckbQmeDnOdX2UKGgGR0BwRTot+TePaAdNNgFoCEdAnJWDR2KVIXV9lChoBkdAb0RkGRmseWgHTRgBaAhHQJyXxePaL4x1fZQoaAZHQHHkZYoy9EloB0v9aAhHQJyZu07bL2Z1fZQoaAZHQEN2cd5prUNoB0vmaAhHQJybg0vXbud1fZQoaAZHQHAaDBVMmF9oB00pAWgIR0CcnwlK9PDYdX2UKGgGR0BwTfmQr+YMaAdNCgFoCEdAnKCBegL7XXV9lChoBkdAbv9y+Yc/+2gHTcYBaAhHQJyjEUtZmqZ1fZQoaAZHQG/G3tjTa0xoB00dAWgIR0CcpeDLKV6edX2UKGgGR0BxzquzQeFMaAdNMQFoCEdAnKetcjZ+QXV9lChoBkdAcinvBacI7mgHS+9oCEdAnKkHyEtdzHV9lChoBkdAUMucJ+lTFWgHS/NoCEdAnKpoptrKvHV9lChoBkdAbsl54W1twmgHTTABaAhHQJytZrGipNt1fZQoaAZHQHBi96ol2NhoB00GAWgIR0CcrtyxzJZGdX2UKGgGR0BUUn3QD3dsaAdL1GgIR0CcsA6mwaBJdX2UKGgGR0BEhnYxtYSyaAdL4mgIR0CcsVJmdy1edX2UKGgGR0BwWrK0UoKEaAdNIwFoCEdAnLRGBJ7LMnV9lChoBkdAbnw6qbSZ0GgHTQgBaAhHQJy13336AOJ1fZQoaAZHQHCBW5Dqnm9oB00sAWgIR0Cct6+RYA80dX2UKGgGR0ByKIKgIyCWaAdL8GgIR0CcuTSElE7XdX2UKGgGR0Bvqc0DU3GXaAdNJgFoCEdAnLxZqmCROnV9lChoBkdAcDRkFwDNhWgHTQABaAhHQJy951eSjg11fZQoaAZHQHMUG9Htnf5oB00rAWgIR0Ccv7eyiVSodX2UKGgGR0BysWpfhMrVaAdL82gIR0CcwSmOlwcYdX2UKGgGR0Bv34iosI3SaAdNCQFoCEdAnMQ26K+BYnV9lChoBkdAcTYajesPrmgHS/toCEdAnMXTN+so2HV9lChoBkdAcx9Vkc0cfmgHS+NoCEdAnMe2OAAhjnV9lChoBkdAPy8jqv/za2gHS9VoCEdAnMleyE+PinV9lChoBkdAbleHIIWxhWgHTScBaAhHQJzNly6tknV1fZQoaAZHQG0WoUzsQd1oB00jAWgIR0Cc0AcgQpWndX2UKGgGR0BwrV9b5dnkaAdNJwFoCEdAnNKwzLwF1XV9lChoBkdAU1c9gWrOq2gHS+5oCEdAnNQhPoFFD3V9lChoBkdAcfVDV6NVBGgHTTsBaAhHQJzXkdtEXtV1fZQoaAZHQHKyYikfs/poB0vyaAhHQJzZGUhV2id1fZQoaAZHQE4+/9pAUtZoB0vHaAhHQJzaUVclgMN1fZQoaAZHQErTfNzKcNJoB0vDaAhHQJzbfQWvbGp1fZQoaAZHQHKavTG5tnBoB00VAWgIR0Cc3peDWbw0dX2UKGgGR0BLTq+zt1IRaAdL22gIR0Cc3+J9iMHbdX2UKGgGR0BxcfFVDKHPaAdL6mgIR0Cc4VUhmoR7dX2UKGgGR0BwehamoBJaaAdL6WgIR0Cc4tQUYbbUdX2UKGgGR0BwR5jwx33YaAdNMwFoCEdAnOY0C/47BHV9lChoBkdAbiC0k4WDYmgHTQ4BaAhHQJzoAa0hNdt1fZQoaAZHQHBiLv9cbBJoB00QAWgIR0Cc6bnqVyFPdX2UKGgGR0BvNCkZaV2SaAdNBgFoCEdAnOtOWWyC4HV9lChoBkdAS6aLjxTbWWgHS79oCEdAnO3jJZGKAXV9lChoBkdAci5bm2b5M2gHS+5oCEdAnO9Ugr6LwXV9lChoBkdAcVrgyM1jzGgHTSwBaAhHQJzxHcbiqAB1fZQoaAZHQHCxE0rK/21oB01MAWgIR0Cc8y2zOX3QdX2UKGgGR0BvDFfTkQwsaAdNDwFoCEdAnPY9+ocaO3V9lChoBkdAb0ssJY1YQ2gHTRYBaAhHQJz359mYjSp1fZQoaAZHQHKfkfPomoloB00EAWgIR0Cc+XlJYkmhdX2UKGgGR0Bvu6T+vQnhaAdNIwFoCEdAnP1CKFZgX3V9lChoBkdAcIXgpBomHGgHTUwBaAhHQJz/yuuA7Pp1fZQoaAZHQEfEA93bEgpoB0vCaAhHQJ0BgTK1XvJ1fZQoaAZHQHExiz9jwx5oB001AWgIR0CdBCylN1yOdX2UKGgGR0BPkk7nxJ/YaAdL0mgIR0CdB7wn6VMVdX2UKGgGR0Bt4pFPSDywaAdNEwFoCEdAnQlrIYFaCHV9lChoBkdAbzBP1L8JlmgHTQMBaAhHQJ0LCqlxffJ1fZQoaAZHQEVgeKbayrxoB0vOaAhHQJ0MR8ohIOJ1fZQoaAZHQFGmIzWPLgZoB0u/aAhHQJ0NeIKtxMp1fZQoaAZHQEsR3MY/FBJoB0vGaAhHQJ0QODWbw0B1fZQoaAZHQHBbAuVX3g1oB00BAWgIR0CdEc0bcXWOdX2UKGgGR0BykU2Kl54XaAdNDgFoCEdAnRN2GATZhHV9lChoBkdAUaygdwNsnGgHS+VoCEdAnRTVB+nZTXV9lChoBkdAco5pUPxx1mgHTQ4BaAhHQJ0X4uFpPAR1fZQoaAZHQHL51fzBhx5oB0vNaAhHQJ0ZH3dsSCh1fZQoaAZHQG7jVNQCSzRoB00DAWgIR0CdGrGQSzw+dX2UKGgGR0BmVpBeHBUJaAdN6ANoCEdAnSJkJKJ2uHV9lChoBkdAcQeqSX+l02gHS/loCEdAnSPwNb1RL3V9lChoBkdAUYwcbR4QjGgHS9FoCEdAnSaQWvbGm3V9lChoBkdATBbj/+85CGgHS9ZoCEdAnSf5qREF4nV9lChoBkdAb6xz+3pfQmgHTRgBaAhHQJ0ps/pt78h1fZQoaAZHQHEJJUcXFcZoB00IAWgIR0CdK0114gRsdX2UKGgGR0BxYDaXa8HwaAdL72gIR0CdLiLEDQqqdX2UKGgGR0Bxvd8/lhgFaAdNFQFoCEdAnTAYy0rsjXV9lChoBkdAcJAIEr5IpmgHTSIBaAhHQJ0ycWcjJMh1fZQoaAZHQHEY+S0Sh8JoB00UAWgIR0CdNLC6Ymb9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ac7044deea34a3953a15851682b04ac338d0455f86da287406ea5afe69427c7
|
3 |
+
size 147314
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a7a175072e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a7a17507370>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a7a17507400>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a7a17507490>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a7a17507520>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a7a175075b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a7a17507640>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a7a175076d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a7a17507760>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a7a175077f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a7a17507880>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a7a17507910>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a79b9227d00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1732516229154151506,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAICW4b3+4aQ+SIyTPT5uX75gJho98HL0PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVHwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGz9GwzLwF2MAWyUTRgBjAF0lEdAnGKruUliSnV9lChoBkdAUJ9f5ULlWGgHS+xoCEdAnGR/ozN2T3V9lChoBkdALehnBciW3WgHS+FoCEdAnGZMMZxaPnV9lChoBkdAcM5xLkCFK2gHTTEBaAhHQJxqAWIoE0V1fZQoaAZHQGvOg1vVEuxoB01SAWgIR0Cca+JlrdnCdX2UKGgGR0Bsnx9iMHbAaAdNMgFoCEdAnG2o8U21lXV9lChoBkdAcU5CFK02L2gHTUoBaAhHQJxvmRQrMC91fZQoaAZHQGujjfvWpZRoB00rAWgIR0CcconlXA/LdX2UKGgGR0BxZWgctGutaAdNDQFoCEdAnHQL+o99t3V9lChoBkdAckRPX05EMWgHTWIBaAhHQJx2Gq94/u91fZQoaAZHQHHBFpblijNoB00uAWgIR0CceQYOlO45dX2UKGgGR0BwMCO+7Dl6aAdL+2gIR0Ccen52Qnx8dX2UKGgGR0ByMOpKjBVNaAdNYQFoCEdAnHx9oSL613V9lChoBkdAcCGD9wWFe2gHTSQBaAhHQJx/Uh8pkPN1fZQoaAZHQHEi+dK/VRVoB0v4aAhHQJyAsn9ehPF1fZQoaAZHQHN7NRFZxJdoB00yAWgIR0CcgnHVwxWUdX2UKGgGR0Btk0H4XXRPaAdNJwFoCEdAnIQW/rSmZXV9lChoBkdAckuCXhOxjmgHTSsBaAhHQJyHBhDw6Qx1fZQoaAZHQG/0dfb9If9oB00LAWgIR0CciJChN/OMdX2UKGgGR0BI4VQqI7/5aAdL6WgIR0CcieywOe8PdX2UKGgGR0AleWDYh+vyaAdL0mgIR0Cciw5DJEH/dX2UKGgGR0ByJbxsl9jPaAdNMgFoCEdAnI4M3ZPEbnV9lChoBkdAcU6nHNorWmgHTTwBaAhHQJyP4CV8kUt1fZQoaAZHQGvT9nK4hEBoB00UAWgIR0CckbQmeDnOdX2UKGgGR0BwRTot+TePaAdNNgFoCEdAnJWDR2KVIXV9lChoBkdAb0RkGRmseWgHTRgBaAhHQJyXxePaL4x1fZQoaAZHQHHkZYoy9EloB0v9aAhHQJyZu07bL2Z1fZQoaAZHQEN2cd5prUNoB0vmaAhHQJybg0vXbud1fZQoaAZHQHAaDBVMmF9oB00pAWgIR0CcnwlK9PDYdX2UKGgGR0BwTfmQr+YMaAdNCgFoCEdAnKCBegL7XXV9lChoBkdAbv9y+Yc/+2gHTcYBaAhHQJyjEUtZmqZ1fZQoaAZHQG/G3tjTa0xoB00dAWgIR0CcpeDLKV6edX2UKGgGR0BxzquzQeFMaAdNMQFoCEdAnKetcjZ+QXV9lChoBkdAcinvBacI7mgHS+9oCEdAnKkHyEtdzHV9lChoBkdAUMucJ+lTFWgHS/NoCEdAnKpoptrKvHV9lChoBkdAbsl54W1twmgHTTABaAhHQJytZrGipNt1fZQoaAZHQHBi96ol2NhoB00GAWgIR0CcrtyxzJZGdX2UKGgGR0BUUn3QD3dsaAdL1GgIR0CcsA6mwaBJdX2UKGgGR0BEhnYxtYSyaAdL4mgIR0CcsVJmdy1edX2UKGgGR0BwWrK0UoKEaAdNIwFoCEdAnLRGBJ7LMnV9lChoBkdAbnw6qbSZ0GgHTQgBaAhHQJy13336AOJ1fZQoaAZHQHCBW5Dqnm9oB00sAWgIR0Cct6+RYA80dX2UKGgGR0ByKIKgIyCWaAdL8GgIR0CcuTSElE7XdX2UKGgGR0Bvqc0DU3GXaAdNJgFoCEdAnLxZqmCROnV9lChoBkdAcDRkFwDNhWgHTQABaAhHQJy951eSjg11fZQoaAZHQHMUG9Htnf5oB00rAWgIR0Ccv7eyiVSodX2UKGgGR0BysWpfhMrVaAdL82gIR0CcwSmOlwcYdX2UKGgGR0Bv34iosI3SaAdNCQFoCEdAnMQ26K+BYnV9lChoBkdAcTYajesPrmgHS/toCEdAnMXTN+so2HV9lChoBkdAcx9Vkc0cfmgHS+NoCEdAnMe2OAAhjnV9lChoBkdAPy8jqv/za2gHS9VoCEdAnMleyE+PinV9lChoBkdAbleHIIWxhWgHTScBaAhHQJzNly6tknV1fZQoaAZHQG0WoUzsQd1oB00jAWgIR0Cc0AcgQpWndX2UKGgGR0BwrV9b5dnkaAdNJwFoCEdAnNKwzLwF1XV9lChoBkdAU1c9gWrOq2gHS+5oCEdAnNQhPoFFD3V9lChoBkdAcfVDV6NVBGgHTTsBaAhHQJzXkdtEXtV1fZQoaAZHQHKyYikfs/poB0vyaAhHQJzZGUhV2id1fZQoaAZHQE4+/9pAUtZoB0vHaAhHQJzaUVclgMN1fZQoaAZHQErTfNzKcNJoB0vDaAhHQJzbfQWvbGp1fZQoaAZHQHKavTG5tnBoB00VAWgIR0Cc3peDWbw0dX2UKGgGR0BLTq+zt1IRaAdL22gIR0Cc3+J9iMHbdX2UKGgGR0BxcfFVDKHPaAdL6mgIR0Cc4VUhmoR7dX2UKGgGR0BwehamoBJaaAdL6WgIR0Cc4tQUYbbUdX2UKGgGR0BwR5jwx33YaAdNMwFoCEdAnOY0C/47BHV9lChoBkdAbiC0k4WDYmgHTQ4BaAhHQJzoAa0hNdt1fZQoaAZHQHBiLv9cbBJoB00QAWgIR0Cc6bnqVyFPdX2UKGgGR0BvNCkZaV2SaAdNBgFoCEdAnOtOWWyC4HV9lChoBkdAS6aLjxTbWWgHS79oCEdAnO3jJZGKAXV9lChoBkdAci5bm2b5M2gHS+5oCEdAnO9Ugr6LwXV9lChoBkdAcVrgyM1jzGgHTSwBaAhHQJzxHcbiqAB1fZQoaAZHQHCxE0rK/21oB01MAWgIR0Cc8y2zOX3QdX2UKGgGR0BvDFfTkQwsaAdNDwFoCEdAnPY9+ocaO3V9lChoBkdAb0ssJY1YQ2gHTRYBaAhHQJz359mYjSp1fZQoaAZHQHKfkfPomoloB00EAWgIR0Cc+XlJYkmhdX2UKGgGR0Bvu6T+vQnhaAdNIwFoCEdAnP1CKFZgX3V9lChoBkdAcIXgpBomHGgHTUwBaAhHQJz/yuuA7Pp1fZQoaAZHQEfEA93bEgpoB0vCaAhHQJ0BgTK1XvJ1fZQoaAZHQHExiz9jwx5oB001AWgIR0CdBCylN1yOdX2UKGgGR0BPkk7nxJ/YaAdL0mgIR0CdB7wn6VMVdX2UKGgGR0Bt4pFPSDywaAdNEwFoCEdAnQlrIYFaCHV9lChoBkdAbzBP1L8JlmgHTQMBaAhHQJ0LCqlxffJ1fZQoaAZHQEVgeKbayrxoB0vOaAhHQJ0MR8ohIOJ1fZQoaAZHQFGmIzWPLgZoB0u/aAhHQJ0NeIKtxMp1fZQoaAZHQEsR3MY/FBJoB0vGaAhHQJ0QODWbw0B1fZQoaAZHQHBbAuVX3g1oB00BAWgIR0CdEc0bcXWOdX2UKGgGR0BykU2Kl54XaAdNDgFoCEdAnRN2GATZhHV9lChoBkdAUaygdwNsnGgHS+VoCEdAnRTVB+nZTXV9lChoBkdAco5pUPxx1mgHTQ4BaAhHQJ0X4uFpPAR1fZQoaAZHQHL51fzBhx5oB0vNaAhHQJ0ZH3dsSCh1fZQoaAZHQG7jVNQCSzRoB00DAWgIR0CdGrGQSzw+dX2UKGgGR0BmVpBeHBUJaAdN6ANoCEdAnSJkJKJ2uHV9lChoBkdAcQeqSX+l02gHS/loCEdAnSPwNb1RL3V9lChoBkdAUYwcbR4QjGgHS9FoCEdAnSaQWvbGm3V9lChoBkdATBbj/+85CGgHS9ZoCEdAnSf5qREF4nV9lChoBkdAb6xz+3pfQmgHTRgBaAhHQJ0ps/pt78h1fZQoaAZHQHEJJUcXFcZoB00IAWgIR0CdK0114gRsdX2UKGgGR0BxYDaXa8HwaAdL72gIR0CdLiLEDQqqdX2UKGgGR0Bxvd8/lhgFaAdNFQFoCEdAnTAYy0rsjXV9lChoBkdAcJAIEr5IpmgHTSIBaAhHQJ0ycWcjJMh1fZQoaAZHQHEY+S0Sh8JoB00UAWgIR0CdNLC6Ymb9dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d162a3d2db3b7f8975c73084df6c007a0a878d40de09b48a88ec20c228665c7
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:137ec8a25c9cacf7c2e39416f8f402890f1e4894bcb22f264ac3825173c6bf98
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (183 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.65321582854887, "std_reward": 16.26715525631831, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-25T07:06:38.647970"}
|