--- library_name: transformers license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: convnextv2-tiny-1k-224-finetuned-barkley results: [] --- # convnextv2-tiny-1k-224-finetuned-barkley This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co./facebook/convnextv2-tiny-1k-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 - Top1 Accuracy: 1.0 - Error Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:| | 1.4696 | 1.0 | 38 | 1.1807 | 0.7273 | 0.6513 | 0.6180 | 0.6768 | 0.6513 | 0.3232 | | 0.7197 | 2.0 | 76 | 0.3719 | 0.9439 | 0.9408 | 0.9404 | 0.9434 | 0.9474 | 0.0566 | | 0.2388 | 3.0 | 114 | 0.1489 | 0.9688 | 0.9671 | 0.9671 | 0.9716 | 0.9671 | 0.0284 | | 0.1048 | 4.0 | 152 | 0.0730 | 0.9868 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 | | 0.1103 | 5.0 | 190 | 0.0288 | 0.9868 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 | | 0.072 | 6.0 | 228 | 0.0537 | 0.9877 | 0.9868 | 0.9869 | 0.9868 | 0.9868 | 0.0132 | | 0.0248 | 7.0 | 266 | 0.0083 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | | 0.0371 | 8.0 | 304 | 0.0653 | 0.9819 | 0.9803 | 0.9802 | 0.9800 | 0.9803 | 0.0200 | | 0.0626 | 9.0 | 342 | 0.2271 | 0.9545 | 0.9408 | 0.9404 | 0.95 | 0.9408 | 0.0500 | | 0.07 | 10.0 | 380 | 0.0304 | 0.9936 | 0.9934 | 0.9934 | 0.9933 | 0.9934 | 0.0067 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1