alyzbane commited on
Commit
16f0a3e
·
verified ·
1 Parent(s): 536608c

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/convnextv2-tiny-1k-224
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: convnextv2-tiny-1k-224-finetuned-barkley
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # convnextv2-tiny-1k-224-finetuned-barkley
21
+
22
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0083
25
+ - Precision: 1.0
26
+ - Recall: 1.0
27
+ - F1: 1.0
28
+ - Accuracy: 1.0
29
+ - Top1 Accuracy: 1.0
30
+ - Error Rate: 0.0
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 5e-05
50
+ - train_batch_size: 8
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - gradient_accumulation_steps: 4
54
+ - total_train_batch_size: 32
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - lr_scheduler_warmup_ratio: 0.1
58
+ - num_epochs: 30
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
64
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
65
+ | 1.4696 | 1.0 | 38 | 1.1807 | 0.7273 | 0.6513 | 0.6180 | 0.6768 | 0.6513 | 0.3232 |
66
+ | 0.7197 | 2.0 | 76 | 0.3719 | 0.9439 | 0.9408 | 0.9404 | 0.9434 | 0.9474 | 0.0566 |
67
+ | 0.2388 | 3.0 | 114 | 0.1489 | 0.9688 | 0.9671 | 0.9671 | 0.9716 | 0.9671 | 0.0284 |
68
+ | 0.1048 | 4.0 | 152 | 0.0730 | 0.9868 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 |
69
+ | 0.1103 | 5.0 | 190 | 0.0288 | 0.9868 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 |
70
+ | 0.072 | 6.0 | 228 | 0.0537 | 0.9877 | 0.9868 | 0.9869 | 0.9868 | 0.9868 | 0.0132 |
71
+ | 0.0248 | 7.0 | 266 | 0.0083 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
72
+ | 0.0371 | 8.0 | 304 | 0.0653 | 0.9819 | 0.9803 | 0.9802 | 0.9800 | 0.9803 | 0.0200 |
73
+ | 0.0626 | 9.0 | 342 | 0.2271 | 0.9545 | 0.9408 | 0.9404 | 0.95 | 0.9408 | 0.0500 |
74
+ | 0.07 | 10.0 | 380 | 0.0304 | 0.9936 | 0.9934 | 0.9934 | 0.9933 | 0.9934 | 0.0067 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.44.2
80
+ - Pytorch 2.3.1+cu121
81
+ - Datasets 3.0.1
82
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 1.0,
4
+ "eval_error_rate": 0.0,
5
+ "eval_f1": 1.0,
6
+ "eval_loss": 0.008335741236805916,
7
+ "eval_precision": 1.0,
8
+ "eval_recall": 1.0,
9
+ "eval_runtime": 50.6937,
10
+ "eval_samples_per_second": 2.998,
11
+ "eval_steps_per_second": 0.375,
12
+ "eval_top1_accuracy": 1.0,
13
+ "total_flos": 3.060866577059021e+17,
14
+ "train_loss": 0.2909727611039814,
15
+ "train_runtime": 5060.0554,
16
+ "train_samples_per_second": 7.209,
17
+ "train_steps_per_second": 0.225
18
+ }
config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/convnextv2-tiny-1k-224",
3
+ "architectures": [
4
+ "ConvNextV2ForImageClassification"
5
+ ],
6
+ "depths": [
7
+ 3,
8
+ 3,
9
+ 9,
10
+ 3
11
+ ],
12
+ "drop_path_rate": 0.0,
13
+ "hidden_act": "gelu",
14
+ "hidden_sizes": [
15
+ 96,
16
+ 192,
17
+ 384,
18
+ 768
19
+ ],
20
+ "id2label": {
21
+ "0": "Iinstia bijuga",
22
+ "1": "Mangifera indica",
23
+ "2": "Pterocarpus indicus",
24
+ "3": "Roystonea regia",
25
+ "4": "Tabebuia"
26
+ },
27
+ "image_size": 224,
28
+ "initializer_range": 0.02,
29
+ "label2id": {
30
+ "Iinstia bijuga": 0,
31
+ "Mangifera indica": 1,
32
+ "Pterocarpus indicus": 2,
33
+ "Roystonea regia": 3,
34
+ "Tabebuia": 4
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "model_type": "convnextv2",
38
+ "num_channels": 3,
39
+ "num_stages": 4,
40
+ "out_features": [
41
+ "stage4"
42
+ ],
43
+ "out_indices": [
44
+ 4
45
+ ],
46
+ "patch_size": 4,
47
+ "problem_type": "single_label_classification",
48
+ "stage_names": [
49
+ "stem",
50
+ "stage1",
51
+ "stage2",
52
+ "stage3",
53
+ "stage4"
54
+ ],
55
+ "torch_dtype": "float32",
56
+ "transformers_version": "4.44.2"
57
+ }
eval_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 1.0,
4
+ "eval_error_rate": 0.0,
5
+ "eval_f1": 1.0,
6
+ "eval_loss": 0.008335741236805916,
7
+ "eval_precision": 1.0,
8
+ "eval_recall": 1.0,
9
+ "eval_runtime": 50.6937,
10
+ "eval_samples_per_second": 2.998,
11
+ "eval_steps_per_second": 0.375,
12
+ "eval_top1_accuracy": 1.0
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3a76b0e1711782aec90d90a1907cbd4c4c5b284eb64932b6f3e6635104548b7
3
+ size 111505052
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_pct": 0.875,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "ConvNextImageProcessor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "shortest_edge": 224
21
+ }
22
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 3.060866577059021e+17,
4
+ "train_loss": 0.2909727611039814,
5
+ "train_runtime": 5060.0554,
6
+ "train_samples_per_second": 7.209,
7
+ "train_steps_per_second": 0.225
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.008335741236805916,
3
+ "best_model_checkpoint": "convnextv2-tiny-1k-224-finetuned-barkley\\checkpoint-266",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 380,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "train_accuracy": 0.3717105263157895
14
+ },
15
+ {
16
+ "epoch": 1.0,
17
+ "grad_norm": Infinity,
18
+ "learning_rate": 1.5789473684210526e-05,
19
+ "loss": 1.4696,
20
+ "step": 38
21
+ },
22
+ {
23
+ "epoch": 1.0,
24
+ "eval_accuracy": 0.6768426344896932,
25
+ "eval_error_rate": 0.3231573655103068,
26
+ "eval_f1": 0.6179742198967869,
27
+ "eval_loss": 1.1806769371032715,
28
+ "eval_precision": 0.7272665779298716,
29
+ "eval_recall": 0.6513157894736842,
30
+ "eval_runtime": 39.4866,
31
+ "eval_samples_per_second": 3.849,
32
+ "eval_steps_per_second": 0.481,
33
+ "eval_top1_accuracy": 0.6513157894736842,
34
+ "step": 38
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "train_accuracy": 0.8472222222222222
39
+ },
40
+ {
41
+ "epoch": 2.0,
42
+ "grad_norm": 13.038293838500977,
43
+ "learning_rate": 3.24561403508772e-05,
44
+ "loss": 0.7197,
45
+ "step": 76
46
+ },
47
+ {
48
+ "epoch": 2.0,
49
+ "eval_accuracy": 0.9434188034188035,
50
+ "eval_error_rate": 0.056581196581196536,
51
+ "eval_f1": 0.9403973173646983,
52
+ "eval_loss": 0.3719189167022705,
53
+ "eval_precision": 0.9439213320792268,
54
+ "eval_recall": 0.9407894736842105,
55
+ "eval_runtime": 25.8579,
56
+ "eval_samples_per_second": 5.878,
57
+ "eval_steps_per_second": 0.735,
58
+ "eval_top1_accuracy": 0.9473684210526315,
59
+ "step": 76
60
+ },
61
+ {
62
+ "epoch": 3.0,
63
+ "train_accuracy": 0.9429824561403509
64
+ },
65
+ {
66
+ "epoch": 3.0,
67
+ "grad_norm": 18.88597297668457,
68
+ "learning_rate": 4.868421052631579e-05,
69
+ "loss": 0.2388,
70
+ "step": 114
71
+ },
72
+ {
73
+ "epoch": 3.0,
74
+ "eval_accuracy": 0.9715686274509803,
75
+ "eval_error_rate": 0.02843137254901973,
76
+ "eval_f1": 0.9670619516200449,
77
+ "eval_loss": 0.14889617264270782,
78
+ "eval_precision": 0.9687561893444246,
79
+ "eval_recall": 0.9671052631578947,
80
+ "eval_runtime": 56.7711,
81
+ "eval_samples_per_second": 2.677,
82
+ "eval_steps_per_second": 0.335,
83
+ "eval_top1_accuracy": 0.9671052631578947,
84
+ "step": 114
85
+ },
86
+ {
87
+ "epoch": 4.0,
88
+ "train_accuracy": 0.9758771929824561
89
+ },
90
+ {
91
+ "epoch": 4.0,
92
+ "grad_norm": 20.039169311523438,
93
+ "learning_rate": 4.834307992202729e-05,
94
+ "loss": 0.1048,
95
+ "step": 152
96
+ },
97
+ {
98
+ "epoch": 4.0,
99
+ "eval_accuracy": 0.9877777777777779,
100
+ "eval_error_rate": 0.012222222222222134,
101
+ "eval_f1": 0.9868421052631579,
102
+ "eval_loss": 0.07301948219537735,
103
+ "eval_precision": 0.9868421052631579,
104
+ "eval_recall": 0.9868421052631579,
105
+ "eval_runtime": 57.9769,
106
+ "eval_samples_per_second": 2.622,
107
+ "eval_steps_per_second": 0.328,
108
+ "eval_top1_accuracy": 0.9868421052631579,
109
+ "step": 152
110
+ },
111
+ {
112
+ "epoch": 5.0,
113
+ "train_accuracy": 0.9685672514619883
114
+ },
115
+ {
116
+ "epoch": 5.0,
117
+ "grad_norm": 32.21807098388672,
118
+ "learning_rate": 4.6539961013645225e-05,
119
+ "loss": 0.1103,
120
+ "step": 190
121
+ },
122
+ {
123
+ "epoch": 5.0,
124
+ "eval_accuracy": 0.9877777777777779,
125
+ "eval_error_rate": 0.012222222222222134,
126
+ "eval_f1": 0.9868421052631579,
127
+ "eval_loss": 0.028847167268395424,
128
+ "eval_precision": 0.9868421052631579,
129
+ "eval_recall": 0.9868421052631579,
130
+ "eval_runtime": 55.6388,
131
+ "eval_samples_per_second": 2.732,
132
+ "eval_steps_per_second": 0.341,
133
+ "eval_top1_accuracy": 0.9868421052631579,
134
+ "step": 190
135
+ },
136
+ {
137
+ "epoch": 6.0,
138
+ "train_accuracy": 0.9824561403508771
139
+ },
140
+ {
141
+ "epoch": 6.0,
142
+ "grad_norm": 0.3600322902202606,
143
+ "learning_rate": 4.468810916179337e-05,
144
+ "loss": 0.072,
145
+ "step": 228
146
+ },
147
+ {
148
+ "epoch": 6.0,
149
+ "eval_accuracy": 0.9867521367521368,
150
+ "eval_error_rate": 0.0132478632478632,
151
+ "eval_f1": 0.986943499272542,
152
+ "eval_loss": 0.053720876574516296,
153
+ "eval_precision": 0.9876644736842105,
154
+ "eval_recall": 0.9868421052631579,
155
+ "eval_runtime": 58.3931,
156
+ "eval_samples_per_second": 2.603,
157
+ "eval_steps_per_second": 0.325,
158
+ "eval_top1_accuracy": 0.9868421052631579,
159
+ "step": 228
160
+ },
161
+ {
162
+ "epoch": 7.0,
163
+ "train_accuracy": 0.9919590643274854
164
+ },
165
+ {
166
+ "epoch": 7.0,
167
+ "grad_norm": 0.21095441281795502,
168
+ "learning_rate": 4.283625730994152e-05,
169
+ "loss": 0.0248,
170
+ "step": 266
171
+ },
172
+ {
173
+ "epoch": 7.0,
174
+ "eval_accuracy": 1.0,
175
+ "eval_error_rate": 0.0,
176
+ "eval_f1": 1.0,
177
+ "eval_loss": 0.008335741236805916,
178
+ "eval_precision": 1.0,
179
+ "eval_recall": 1.0,
180
+ "eval_runtime": 60.881,
181
+ "eval_samples_per_second": 2.497,
182
+ "eval_steps_per_second": 0.312,
183
+ "eval_top1_accuracy": 1.0,
184
+ "step": 266
185
+ },
186
+ {
187
+ "epoch": 8.0,
188
+ "train_accuracy": 0.9904970760233918
189
+ },
190
+ {
191
+ "epoch": 8.0,
192
+ "grad_norm": 65.39556121826172,
193
+ "learning_rate": 4.098440545808967e-05,
194
+ "loss": 0.0371,
195
+ "step": 304
196
+ },
197
+ {
198
+ "epoch": 8.0,
199
+ "eval_accuracy": 0.9800000000000001,
200
+ "eval_error_rate": 0.019999999999999907,
201
+ "eval_f1": 0.9801607428504544,
202
+ "eval_loss": 0.06527390331029892,
203
+ "eval_precision": 0.9818634423897581,
204
+ "eval_recall": 0.9802631578947368,
205
+ "eval_runtime": 54.5902,
206
+ "eval_samples_per_second": 2.784,
207
+ "eval_steps_per_second": 0.348,
208
+ "eval_top1_accuracy": 0.9802631578947368,
209
+ "step": 304
210
+ },
211
+ {
212
+ "epoch": 9.0,
213
+ "train_accuracy": 0.9846491228070176
214
+ },
215
+ {
216
+ "epoch": 9.0,
217
+ "grad_norm": 38.53361511230469,
218
+ "learning_rate": 3.9181286549707604e-05,
219
+ "loss": 0.0626,
220
+ "step": 342
221
+ },
222
+ {
223
+ "epoch": 9.0,
224
+ "eval_accuracy": 0.95,
225
+ "eval_error_rate": 0.050000000000000044,
226
+ "eval_f1": 0.9404217064400131,
227
+ "eval_loss": 0.22711969912052155,
228
+ "eval_precision": 0.9544534412955467,
229
+ "eval_recall": 0.9407894736842105,
230
+ "eval_runtime": 51.6016,
231
+ "eval_samples_per_second": 2.946,
232
+ "eval_steps_per_second": 0.368,
233
+ "eval_top1_accuracy": 0.9407894736842105,
234
+ "step": 342
235
+ },
236
+ {
237
+ "epoch": 10.0,
238
+ "train_accuracy": 0.9766081871345029
239
+ },
240
+ {
241
+ "epoch": 10.0,
242
+ "grad_norm": 0.2995816767215729,
243
+ "learning_rate": 3.7329434697855756e-05,
244
+ "loss": 0.07,
245
+ "step": 380
246
+ },
247
+ {
248
+ "epoch": 10.0,
249
+ "eval_accuracy": 0.9933333333333334,
250
+ "eval_error_rate": 0.006666666666666599,
251
+ "eval_f1": 0.9934103601236665,
252
+ "eval_loss": 0.030387282371520996,
253
+ "eval_precision": 0.9935988620199147,
254
+ "eval_recall": 0.993421052631579,
255
+ "eval_runtime": 52.2379,
256
+ "eval_samples_per_second": 2.91,
257
+ "eval_steps_per_second": 0.364,
258
+ "eval_top1_accuracy": 0.993421052631579,
259
+ "step": 380
260
+ },
261
+ {
262
+ "epoch": 10.0,
263
+ "step": 380,
264
+ "total_flos": 3.060866577059021e+17,
265
+ "train_loss": 0.2909727611039814,
266
+ "train_runtime": 5060.0554,
267
+ "train_samples_per_second": 7.209,
268
+ "train_steps_per_second": 0.225
269
+ }
270
+ ],
271
+ "logging_steps": 10,
272
+ "max_steps": 1140,
273
+ "num_input_tokens_seen": 0,
274
+ "num_train_epochs": 30,
275
+ "save_steps": 500,
276
+ "stateful_callbacks": {
277
+ "EarlyStoppingCallback": {
278
+ "args": {
279
+ "early_stopping_patience": 3,
280
+ "early_stopping_threshold": 0.0
281
+ },
282
+ "attributes": {
283
+ "early_stopping_patience_counter": 0
284
+ }
285
+ },
286
+ "TrainerControl": {
287
+ "args": {
288
+ "should_epoch_stop": false,
289
+ "should_evaluate": false,
290
+ "should_log": false,
291
+ "should_save": true,
292
+ "should_training_stop": true
293
+ },
294
+ "attributes": {}
295
+ }
296
+ },
297
+ "total_flos": 3.060866577059021e+17,
298
+ "train_batch_size": 8,
299
+ "trial_name": null,
300
+ "trial_params": null
301
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de756896046cbfdebae44572e838af135f99c09e1d5933136547d9ed49aea476
3
+ size 5176