alvarobb commited on
Commit
423efc3
·
1 Parent(s): 3d6751e

Pushing v1 of agent trained with PPO in LunarLander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 243.59 +/- 21.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c332790d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c33279160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c332791f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c33279280>", "_build": "<function ActorCriticPolicy._build at 0x7f6c33279310>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c332793a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c33279430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c332794c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c33279550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c332795e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c33279670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c33270e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672247190221661998, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKajuT3Riqo/W6PjPlqLn7752wg+wrJQPgAAAAAAAAAAbd0cvnHAc7so+dW4A9MWthxe2DxRUQI4AACAPwAAgD8z1Y48ou+OPy5nZzww6sy+zazNPWotUj0AAAAAAAAAAE0eWz6DHzg/AaiCvlt1jr7tz9M8XWmmvAAAAAAAAAAAQCBFPtizkj/7u+Q+2wepvgCPgT44s+I9AAAAAAAAAABmlIk9fyLKPrImm73m3ya+AAamPdK+G70AAAAAAAAAAC3aQb5O7oK8GqDLuwRvGrq4Y+s9Nf73OgAAgD8AAIA/mjutvOzlez4Dchu+f3WRvtSnr7xmJ5K9AAAAAAAAAAAt4IM+S69/P52Npz78NoS+BoqNPoIgAj4AAAAAAAAAAM2ZCb1ckz+6bg02OWI4JTT1rLm6opdXuAAAgD8AAIA/jSLsvVNh8D4wLF49ErNIvtB79TufxMM8AAAAAAAAAAAAFK47Oq2zP+wVhj4szzC+6gyAu75+gLwAAAAAAAAAAAA7dj5GfYM/lsWBPqCfdb6/8K8+FoLMPQAAAAAAAAAA5tUIPWdIJz62uAG++uSAvjLoIT0St5q9AAAAAAAAAAAAkGg8gm9wPq1Sjb7leXq+1NEBvr1NvjwAAAAAAAAAAGYLUT0pRF26CpotuKdCt7MPnA47Z5NHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyECeXb6oZkCUhpRSlIwBbJRN6AOMAXSUR0CWFHI2fkFOdX2UKGgGaAloD0MIJnDrbl5xckCUhpRSlGgVTWEBaBZHQJYU0GNaQmx1fZQoaAZoCWgPQwhdM/lmm5xiQJSGlFKUaBVN6ANoFkdAlhWnLzPKMnV9lChoBmgJaA9DCAjjp3FvoGNAlIaUUpRoFU3oA2gWR0CWGGZ4wAU+dX2UKGgGaAloD0MIj8cMVMb9cECUhpRSlGgVTUADaBZHQJYeyGwiaAp1fZQoaAZoCWgPQwj/B1irdk1VQJSGlFKUaBVL82gWR0CWImTCLuQZdX2UKGgGaAloD0MIqcKf4U3kcECUhpRSlGgVTS8CaBZHQJYqrQQcxTN1fZQoaAZoCWgPQwj83qY/u4BwQJSGlFKUaBVNUAJoFkdAlixg8W9DhXV9lChoBmgJaA9DCPmFV5I822xAlIaUUpRoFU1bAWgWR0CWLHikO7QLdX2UKGgGaAloD0MIz6EMVTEQZECUhpRSlGgVTegDaBZHQJYt8fW+XZ51fZQoaAZoCWgPQwhDHyxjQyhiQJSGlFKUaBVN6ANoFkdAljVP7iyY5XV9lChoBmgJaA9DCBbe5SI+KHBAlIaUUpRoFU2PA2gWR0CWUlDD0lJIdX2UKGgGaAloD0MIij4fZUQqYkCUhpRSlGgVTegDaBZHQJZdCef7Jnx1fZQoaAZoCWgPQwhCXDl7Z6ZgQJSGlFKUaBVN6ANoFkdAll2jW07bL3V9lChoBmgJaA9DCLoxPWFJOXJAlIaUUpRoFU1WA2gWR0CWZ6HHmzSkdX2UKGgGaAloD0MIhQfNrjsNckCUhpRSlGgVTesBaBZHQJZoeESM98t1fZQoaAZoCWgPQwhUi4hi8sBkQJSGlFKUaBVN6ANoFkdAlmkZ8rqdH3V9lChoBmgJaA9DCDUqcLKNW2VAlIaUUpRoFU3oA2gWR0CWa2cqOLiudX2UKGgGaAloD0MItcNfk7WzY0CUhpRSlGgVTegDaBZHQJZxUKmbb111fZQoaAZoCWgPQwg/kLxzqJViQJSGlFKUaBVN6ANoFkdAlnNnzxwyZnV9lChoBmgJaA9DCLVOXI6XyXBAlIaUUpRoFU07AWgWR0CWdLJjDsMRdX2UKGgGaAloD0MIXeFdLmLxYECUhpRSlGgVTegDaBZHQJZ2jNqxkd51fZQoaAZoCWgPQwie0sH6P8hxQJSGlFKUaBVNDgNoFkdAlnr4PoV2zXV9lChoBmgJaA9DCLpOIy0V52BAlIaUUpRoFU3oA2gWR0CWfRlSCOFQdX2UKGgGaAloD0MIOWOYE3SAcECUhpRSlGgVTS8DaBZHQJZ9PBDXvph1fZQoaAZoCWgPQwhNS6yMRrVnQJSGlFKUaBVN6ANoFkdAloBPoV2zOXV9lChoBmgJaA9DCKH2WztR5nBAlIaUUpRoFU1xAWgWR0CWgJfEGZ/kdX2UKGgGaAloD0MI/N8RFSoHb0CUhpRSlGgVTU8BaBZHQJaBqjFhodx1fZQoaAZoCWgPQwid9/9xwlpvQJSGlFKUaBVNuwNoFkdAloQyeVcD83V9lChoBmgJaA9DCEGADB074WxAlIaUUpRoFU1xAWgWR0CWiNH5aePJdX2UKGgGaAloD0MIvY44ZANMYUCUhpRSlGgVTegDaBZHQJaRf3SKFZh1fZQoaAZoCWgPQwi6EoHqHwFlQJSGlFKUaBVN6ANoFkdAlpjtz4k/r3V9lChoBmgJaA9DCD4hO29jnUxAlIaUUpRoFUv0aBZHQJayZZMcp9Z1fZQoaAZoCWgPQwiBlNi1vR5tQJSGlFKUaBVNvgFoFkdAlrMj+vQnhXV9lChoBmgJaA9DCEWEfxG0Lm9AlIaUUpRoFU2IAmgWR0CWuSKxs2vTdX2UKGgGaAloD0MIf4XMlYF4cECUhpRSlGgVTUcDaBZHQJa6ZuVHFxZ1fZQoaAZoCWgPQwhEvkupS09XQJSGlFKUaBVN6ANoFkdAlrtK4lQdj3V9lChoBmgJaA9DCKYol8YvykJAlIaUUpRoFUv7aBZHQJa8PechC+l1fZQoaAZoCWgPQwhZFkz8EYRxQJSGlFKUaBVNewNoFkdAlr6B0+1SfnV9lChoBmgJaA9DCF7Ymq38lXFAlIaUUpRoFU0TAmgWR0CWwcLS/j82dX2UKGgGaAloD0MIhNbDlwm+bkCUhpRSlGgVTbUCaBZHQJbEbVPN3W51fZQoaAZoCWgPQwhmwcQfxXRuQJSGlFKUaBVNygJoFkdAlsodJz1bq3V9lChoBmgJaA9DCL4ViQlqgnBAlIaUUpRoFU0cAWgWR0CWzCDa4+bFdX2UKGgGaAloD0MIfH2tS42abkCUhpRSlGgVTXoBaBZHQJbMSycCo0h1fZQoaAZoCWgPQwinkgGgijByQJSGlFKUaBVNpwFoFkdAlsx3uuzQeHV9lChoBmgJaA9DCMI1d/S/+WFAlIaUUpRoFU3oA2gWR0CWzfoOQQtjdX2UKGgGaAloD0MIYU87/DUHXkCUhpRSlGgVTegDaBZHQJbQZqSHM2Z1fZQoaAZoCWgPQwi9VGzM69RXQJSGlFKUaBVN6ANoFkdAltPze9Ba93V9lChoBmgJaA9DCN17uOQ4wXBAlIaUUpRoFU25A2gWR0CW1kUliSaFdX2UKGgGaAloD0MI1qpdE9KXbkCUhpRSlGgVTcgDaBZHQJbW1diUgSx1fZQoaAZoCWgPQwgRNdHnI2tvQJSGlFKUaBVNBwJoFkdAltfkYsNDt3V9lChoBmgJaA9DCEzHnGdsr3JAlIaUUpRoFU06AmgWR0CW3EljVhCudX2UKGgGaAloD0MIuK0tPC9VbkCUhpRSlGgVTWwBaBZHQJbgfEit7rt1fZQoaAZoCWgPQwiWJTrLLElyQJSGlFKUaBVNywJoFkdAluYmyLQ5WHV9lChoBmgJaA9DCFQ6WP/nz25AlIaUUpRoFU33AmgWR0CW62bEP1+RdX2UKGgGaAloD0MIJlMFoxLKbkCUhpRSlGgVTZsBaBZHQJbv4H4XXRR1fZQoaAZoCWgPQwi7l/vkKNxmQJSGlFKUaBVN6ANoFkdAlvEGahHsknV9lChoBmgJaA9DCIVDb/EwQXBAlIaUUpRoFU2xAWgWR0CXCOWszVMFdX2UKGgGaAloD0MIox8Npwx2cUCUhpRSlGgVTQgDaBZHQJcKA7/4qPR1fZQoaAZoCWgPQwg50hkYeRduQJSGlFKUaBVNigJoFkdAlwoURjBl+XV9lChoBmgJaA9DCDj27LkMlXJAlIaUUpRoFU3JAmgWR0CXC9Aksz2wdX2UKGgGaAloD0MIGxL3WHoucUCUhpRSlGgVTYwBaBZHQJcMokE9t/F1fZQoaAZoCWgPQwhIaqFkMgByQJSGlFKUaBVNjwJoFkdAlw7Y9Pk7wXV9lChoBmgJaA9DCFopBHKJOm9AlIaUUpRoFU15AmgWR0CXEWpcophGdX2UKGgGaAloD0MILWACt+6ibkCUhpRSlGgVTQABaBZHQJcSJJiAlOZ1fZQoaAZoCWgPQwh1lIPZBNJqQJSGlFKUaBVNQQJoFkdAlxJPxtpEhXV9lChoBmgJaA9DCCZXsfhNDV5AlIaUUpRoFU3oA2gWR0CXE9++M6zWdX2UKGgGaAloD0MIjxoTYi4xSkCUhpRSlGgVS+xoFkdAlxQy8BdUsHV9lChoBmgJaA9DCI6xE16CRnBAlIaUUpRoFU0nA2gWR0CXFG3vhIe6dX2UKGgGaAloD0MIVwVqMbg2cECUhpRSlGgVTQACaBZHQJcWRl7MPjJ1fZQoaAZoCWgPQwjAXIsWYD9wQJSGlFKUaBVNEwFoFkdAlxhDjBEa2nV9lChoBmgJaA9DCOCik6UWjHJAlIaUUpRoFU0fAWgWR0CXGmvlU6xPdX2UKGgGaAloD0MItI8V/LZfbkCUhpRSlGgVTV0BaBZHQJcbF4bCJoF1fZQoaAZoCWgPQwiPOc/YF4VwQJSGlFKUaBVNTQFoFkdAlxs2Rq46O3V9lChoBmgJaA9DCMiZJmy/e2NAlIaUUpRoFU3oA2gWR0CXHCDoyKvWdX2UKGgGaAloD0MIKZXwhN7ubkCUhpRSlGgVTTUBaBZHQJchh+H8CPp1fZQoaAZoCWgPQwjY0qOpHgBxQJSGlFKUaBVN8wFoFkdAlyJd+PRzBHV9lChoBmgJaA9DCKFkcmqnsXBAlIaUUpRoFU1vAWgWR0CXJDrtmcvvdX2UKGgGaAloD0MIhIJStDKTcUCUhpRSlGgVTe8BaBZHQJcm7e9Ba9t1fZQoaAZoCWgPQwi7Qh8sYz9xQJSGlFKUaBVNlgFoFkdAlypnd43WF3V9lChoBmgJaA9DCB9q2zCKr3FAlIaUUpRoFU2qAWgWR0CXKz+OOsDGdX2UKGgGaAloD0MI0vwxrY3wckCUhpRSlGgVTVIBaBZHQJcrvS8an751fZQoaAZoCWgPQwjUSEvl7fNtQJSGlFKUaBVN3wFoFkdAlyxqrzXjEXV9lChoBmgJaA9DCJPEknL3f29AlIaUUpRoFU2QAWgWR0CXLMW4EwFldX2UKGgGaAloD0MIu5f75GieckCUhpRSlGgVTUwBaBZHQJcul/2Cdz51fZQoaAZoCWgPQwiuDoC4Kx1yQJSGlFKUaBVNXwFoFkdAly9yed07sHV9lChoBmgJaA9DCJje/ly0oW1AlIaUUpRoFU1dAWgWR0CXMGiD/VAidX2UKGgGaAloD0MILPLrh9i6b0CUhpRSlGgVTTwBaBZHQJc0b225QP91fZQoaAZoCWgPQwireCPzyLZiQJSGlFKUaBVN6ANoFkdAlzXocR15jnV9lChoBmgJaA9DCEN1c/F3qHBAlIaUUpRoFU1JAWgWR0CXNuMPz4DcdX2UKGgGaAloD0MIG76FdaPQcUCUhpRSlGgVTf8BaBZHQJc3FHavicZ1fZQoaAZoCWgPQwj+t5Idm3FzQJSGlFKUaBVL/WgWR0CXN9ZHd43WdX2UKGgGaAloD0MIDcUdb3IzbUCUhpRSlGgVTTYBaBZHQJc4IRTS9dx1fZQoaAZoCWgPQwidRloqb2JvQJSGlFKUaBVNnAFoFkdAlzi7FsHjZXV9lChoBmgJaA9DCEuQEVBhSmtAlIaUUpRoFU0YAWgWR0CXPQWOZLIxdX2UKGgGaAloD0MIQE6YMJr1ckCUhpRSlGgVTVgBaBZHQJc9M9IPK+11fZQoaAZoCWgPQwj8U6pEWYBuQJSGlFKUaBVNRwFoFkdAlz26cRUWEnV9lChoBmgJaA9DCGHB/YCHBnNAlIaUUpRoFU0JAWgWR0CXPiWgOBlMdX2UKGgGaAloD0MIq10T0tq5cECUhpRSlGgVTREDaBZHQJc+hrEcbR51fZQoaAZoCWgPQwhGI59XvI9vQJSGlFKUaBVNewFoFkdAlz9H0btJF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
ppo_lunarlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dcd4be6d00366d5cc235b405e7c3378f236298acad4eb3b49e74746dd13fd9c
3
+ size 147204
ppo_lunarlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_lunarlander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c332790d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c33279160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c332791f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c33279280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6c33279310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6c332793a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c33279430>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6c332794c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c33279550>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c332795e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c33279670>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6c33270e10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
26
+ "dtype": "float32",
27
+ "shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
39
+ "n": 4,
40
+ "shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672247190221661998,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKajuT3Riqo/W6PjPlqLn7752wg+wrJQPgAAAAAAAAAAbd0cvnHAc7so+dW4A9MWthxe2DxRUQI4AACAPwAAgD8z1Y48ou+OPy5nZzww6sy+zazNPWotUj0AAAAAAAAAAE0eWz6DHzg/AaiCvlt1jr7tz9M8XWmmvAAAAAAAAAAAQCBFPtizkj/7u+Q+2wepvgCPgT44s+I9AAAAAAAAAABmlIk9fyLKPrImm73m3ya+AAamPdK+G70AAAAAAAAAAC3aQb5O7oK8GqDLuwRvGrq4Y+s9Nf73OgAAgD8AAIA/mjutvOzlez4Dchu+f3WRvtSnr7xmJ5K9AAAAAAAAAAAt4IM+S69/P52Npz78NoS+BoqNPoIgAj4AAAAAAAAAAM2ZCb1ckz+6bg02OWI4JTT1rLm6opdXuAAAgD8AAIA/jSLsvVNh8D4wLF49ErNIvtB79TufxMM8AAAAAAAAAAAAFK47Oq2zP+wVhj4szzC+6gyAu75+gLwAAAAAAAAAAAA7dj5GfYM/lsWBPqCfdb6/8K8+FoLMPQAAAAAAAAAA5tUIPWdIJz62uAG++uSAvjLoIT0St5q9AAAAAAAAAAAAkGg8gm9wPq1Sjb7leXq+1NEBvr1NvjwAAAAAAAAAAGYLUT0pRF26CpotuKdCt7MPnA47Z5NHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyECeXb6oZkCUhpRSlIwBbJRN6AOMAXSUR0CWFHI2fkFOdX2UKGgGaAloD0MIJnDrbl5xckCUhpRSlGgVTWEBaBZHQJYU0GNaQmx1fZQoaAZoCWgPQwhdM/lmm5xiQJSGlFKUaBVN6ANoFkdAlhWnLzPKMnV9lChoBmgJaA9DCAjjp3FvoGNAlIaUUpRoFU3oA2gWR0CWGGZ4wAU+dX2UKGgGaAloD0MIj8cMVMb9cECUhpRSlGgVTUADaBZHQJYeyGwiaAp1fZQoaAZoCWgPQwj/B1irdk1VQJSGlFKUaBVL82gWR0CWImTCLuQZdX2UKGgGaAloD0MIqcKf4U3kcECUhpRSlGgVTS8CaBZHQJYqrQQcxTN1fZQoaAZoCWgPQwj83qY/u4BwQJSGlFKUaBVNUAJoFkdAlixg8W9DhXV9lChoBmgJaA9DCPmFV5I822xAlIaUUpRoFU1bAWgWR0CWLHikO7QLdX2UKGgGaAloD0MIz6EMVTEQZECUhpRSlGgVTegDaBZHQJYt8fW+XZ51fZQoaAZoCWgPQwhDHyxjQyhiQJSGlFKUaBVN6ANoFkdAljVP7iyY5XV9lChoBmgJaA9DCBbe5SI+KHBAlIaUUpRoFU2PA2gWR0CWUlDD0lJIdX2UKGgGaAloD0MIij4fZUQqYkCUhpRSlGgVTegDaBZHQJZdCef7Jnx1fZQoaAZoCWgPQwhCXDl7Z6ZgQJSGlFKUaBVN6ANoFkdAll2jW07bL3V9lChoBmgJaA9DCLoxPWFJOXJAlIaUUpRoFU1WA2gWR0CWZ6HHmzSkdX2UKGgGaAloD0MIhQfNrjsNckCUhpRSlGgVTesBaBZHQJZoeESM98t1fZQoaAZoCWgPQwhUi4hi8sBkQJSGlFKUaBVN6ANoFkdAlmkZ8rqdH3V9lChoBmgJaA9DCDUqcLKNW2VAlIaUUpRoFU3oA2gWR0CWa2cqOLiudX2UKGgGaAloD0MItcNfk7WzY0CUhpRSlGgVTegDaBZHQJZxUKmbb111fZQoaAZoCWgPQwg/kLxzqJViQJSGlFKUaBVN6ANoFkdAlnNnzxwyZnV9lChoBmgJaA9DCLVOXI6XyXBAlIaUUpRoFU07AWgWR0CWdLJjDsMRdX2UKGgGaAloD0MIXeFdLmLxYECUhpRSlGgVTegDaBZHQJZ2jNqxkd51fZQoaAZoCWgPQwie0sH6P8hxQJSGlFKUaBVNDgNoFkdAlnr4PoV2zXV9lChoBmgJaA9DCLpOIy0V52BAlIaUUpRoFU3oA2gWR0CWfRlSCOFQdX2UKGgGaAloD0MIOWOYE3SAcECUhpRSlGgVTS8DaBZHQJZ9PBDXvph1fZQoaAZoCWgPQwhNS6yMRrVnQJSGlFKUaBVN6ANoFkdAloBPoV2zOXV9lChoBmgJaA9DCKH2WztR5nBAlIaUUpRoFU1xAWgWR0CWgJfEGZ/kdX2UKGgGaAloD0MI/N8RFSoHb0CUhpRSlGgVTU8BaBZHQJaBqjFhodx1fZQoaAZoCWgPQwid9/9xwlpvQJSGlFKUaBVNuwNoFkdAloQyeVcD83V9lChoBmgJaA9DCEGADB074WxAlIaUUpRoFU1xAWgWR0CWiNH5aePJdX2UKGgGaAloD0MIvY44ZANMYUCUhpRSlGgVTegDaBZHQJaRf3SKFZh1fZQoaAZoCWgPQwi6EoHqHwFlQJSGlFKUaBVN6ANoFkdAlpjtz4k/r3V9lChoBmgJaA9DCD4hO29jnUxAlIaUUpRoFUv0aBZHQJayZZMcp9Z1fZQoaAZoCWgPQwiBlNi1vR5tQJSGlFKUaBVNvgFoFkdAlrMj+vQnhXV9lChoBmgJaA9DCEWEfxG0Lm9AlIaUUpRoFU2IAmgWR0CWuSKxs2vTdX2UKGgGaAloD0MIf4XMlYF4cECUhpRSlGgVTUcDaBZHQJa6ZuVHFxZ1fZQoaAZoCWgPQwhEvkupS09XQJSGlFKUaBVN6ANoFkdAlrtK4lQdj3V9lChoBmgJaA9DCKYol8YvykJAlIaUUpRoFUv7aBZHQJa8PechC+l1fZQoaAZoCWgPQwhZFkz8EYRxQJSGlFKUaBVNewNoFkdAlr6B0+1SfnV9lChoBmgJaA9DCF7Ymq38lXFAlIaUUpRoFU0TAmgWR0CWwcLS/j82dX2UKGgGaAloD0MIhNbDlwm+bkCUhpRSlGgVTbUCaBZHQJbEbVPN3W51fZQoaAZoCWgPQwhmwcQfxXRuQJSGlFKUaBVNygJoFkdAlsodJz1bq3V9lChoBmgJaA9DCL4ViQlqgnBAlIaUUpRoFU0cAWgWR0CWzCDa4+bFdX2UKGgGaAloD0MIfH2tS42abkCUhpRSlGgVTXoBaBZHQJbMSycCo0h1fZQoaAZoCWgPQwinkgGgijByQJSGlFKUaBVNpwFoFkdAlsx3uuzQeHV9lChoBmgJaA9DCMI1d/S/+WFAlIaUUpRoFU3oA2gWR0CWzfoOQQtjdX2UKGgGaAloD0MIYU87/DUHXkCUhpRSlGgVTegDaBZHQJbQZqSHM2Z1fZQoaAZoCWgPQwi9VGzM69RXQJSGlFKUaBVN6ANoFkdAltPze9Ba93V9lChoBmgJaA9DCN17uOQ4wXBAlIaUUpRoFU25A2gWR0CW1kUliSaFdX2UKGgGaAloD0MI1qpdE9KXbkCUhpRSlGgVTcgDaBZHQJbW1diUgSx1fZQoaAZoCWgPQwgRNdHnI2tvQJSGlFKUaBVNBwJoFkdAltfkYsNDt3V9lChoBmgJaA9DCEzHnGdsr3JAlIaUUpRoFU06AmgWR0CW3EljVhCudX2UKGgGaAloD0MIuK0tPC9VbkCUhpRSlGgVTWwBaBZHQJbgfEit7rt1fZQoaAZoCWgPQwiWJTrLLElyQJSGlFKUaBVNywJoFkdAluYmyLQ5WHV9lChoBmgJaA9DCFQ6WP/nz25AlIaUUpRoFU33AmgWR0CW62bEP1+RdX2UKGgGaAloD0MIJlMFoxLKbkCUhpRSlGgVTZsBaBZHQJbv4H4XXRR1fZQoaAZoCWgPQwi7l/vkKNxmQJSGlFKUaBVN6ANoFkdAlvEGahHsknV9lChoBmgJaA9DCIVDb/EwQXBAlIaUUpRoFU2xAWgWR0CXCOWszVMFdX2UKGgGaAloD0MIox8Npwx2cUCUhpRSlGgVTQgDaBZHQJcKA7/4qPR1fZQoaAZoCWgPQwg50hkYeRduQJSGlFKUaBVNigJoFkdAlwoURjBl+XV9lChoBmgJaA9DCDj27LkMlXJAlIaUUpRoFU3JAmgWR0CXC9Aksz2wdX2UKGgGaAloD0MIGxL3WHoucUCUhpRSlGgVTYwBaBZHQJcMokE9t/F1fZQoaAZoCWgPQwhIaqFkMgByQJSGlFKUaBVNjwJoFkdAlw7Y9Pk7wXV9lChoBmgJaA9DCFopBHKJOm9AlIaUUpRoFU15AmgWR0CXEWpcophGdX2UKGgGaAloD0MILWACt+6ibkCUhpRSlGgVTQABaBZHQJcSJJiAlOZ1fZQoaAZoCWgPQwh1lIPZBNJqQJSGlFKUaBVNQQJoFkdAlxJPxtpEhXV9lChoBmgJaA9DCCZXsfhNDV5AlIaUUpRoFU3oA2gWR0CXE9++M6zWdX2UKGgGaAloD0MIjxoTYi4xSkCUhpRSlGgVS+xoFkdAlxQy8BdUsHV9lChoBmgJaA9DCI6xE16CRnBAlIaUUpRoFU0nA2gWR0CXFG3vhIe6dX2UKGgGaAloD0MIVwVqMbg2cECUhpRSlGgVTQACaBZHQJcWRl7MPjJ1fZQoaAZoCWgPQwjAXIsWYD9wQJSGlFKUaBVNEwFoFkdAlxhDjBEa2nV9lChoBmgJaA9DCOCik6UWjHJAlIaUUpRoFU0fAWgWR0CXGmvlU6xPdX2UKGgGaAloD0MItI8V/LZfbkCUhpRSlGgVTV0BaBZHQJcbF4bCJoF1fZQoaAZoCWgPQwiPOc/YF4VwQJSGlFKUaBVNTQFoFkdAlxs2Rq46O3V9lChoBmgJaA9DCMiZJmy/e2NAlIaUUpRoFU3oA2gWR0CXHCDoyKvWdX2UKGgGaAloD0MIKZXwhN7ubkCUhpRSlGgVTTUBaBZHQJchh+H8CPp1fZQoaAZoCWgPQwjY0qOpHgBxQJSGlFKUaBVN8wFoFkdAlyJd+PRzBHV9lChoBmgJaA9DCKFkcmqnsXBAlIaUUpRoFU1vAWgWR0CXJDrtmcvvdX2UKGgGaAloD0MIhIJStDKTcUCUhpRSlGgVTe8BaBZHQJcm7e9Ba9t1fZQoaAZoCWgPQwi7Qh8sYz9xQJSGlFKUaBVNlgFoFkdAlypnd43WF3V9lChoBmgJaA9DCB9q2zCKr3FAlIaUUpRoFU2qAWgWR0CXKz+OOsDGdX2UKGgGaAloD0MI0vwxrY3wckCUhpRSlGgVTVIBaBZHQJcrvS8an751fZQoaAZoCWgPQwjUSEvl7fNtQJSGlFKUaBVN3wFoFkdAlyxqrzXjEXV9lChoBmgJaA9DCJPEknL3f29AlIaUUpRoFU2QAWgWR0CXLMW4EwFldX2UKGgGaAloD0MIu5f75GieckCUhpRSlGgVTUwBaBZHQJcul/2Cdz51fZQoaAZoCWgPQwiuDoC4Kx1yQJSGlFKUaBVNXwFoFkdAly9yed07sHV9lChoBmgJaA9DCJje/ly0oW1AlIaUUpRoFU1dAWgWR0CXMGiD/VAidX2UKGgGaAloD0MILPLrh9i6b0CUhpRSlGgVTTwBaBZHQJc0b225QP91fZQoaAZoCWgPQwireCPzyLZiQJSGlFKUaBVN6ANoFkdAlzXocR15jnV9lChoBmgJaA9DCEN1c/F3qHBAlIaUUpRoFU1JAWgWR0CXNuMPz4DcdX2UKGgGaAloD0MIG76FdaPQcUCUhpRSlGgVTf8BaBZHQJc3FHavicZ1fZQoaAZoCWgPQwj+t5Idm3FzQJSGlFKUaBVL/WgWR0CXN9ZHd43WdX2UKGgGaAloD0MIDcUdb3IzbUCUhpRSlGgVTTYBaBZHQJc4IRTS9dx1fZQoaAZoCWgPQwidRloqb2JvQJSGlFKUaBVNnAFoFkdAlzi7FsHjZXV9lChoBmgJaA9DCEuQEVBhSmtAlIaUUpRoFU0YAWgWR0CXPQWOZLIxdX2UKGgGaAloD0MIQE6YMJr1ckCUhpRSlGgVTVgBaBZHQJc9M9IPK+11fZQoaAZoCWgPQwj8U6pEWYBuQJSGlFKUaBVNRwFoFkdAlz26cRUWEnV9lChoBmgJaA9DCGHB/YCHBnNAlIaUUpRoFU0JAWgWR0CXPiWgOBlMdX2UKGgGaAloD0MIq10T0tq5cECUhpRSlGgVTREDaBZHQJc+hrEcbR51fZQoaAZoCWgPQwhGI59XvI9vQJSGlFKUaBVNewFoFkdAlz9H0btJF3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_lunarlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aa55b0b771dedad1c1a61b01e277afb9aa89b57162ee672458f079389f3c564
3
+ size 87929
ppo_lunarlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdd02ea823acf151d6624ca3d7026d0bebcfc4a73ab47152a6355c3a22f6b6f4
3
+ size 43201
ppo_lunarlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunarlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.17.3
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 243.5892510662182, "std_reward": 21.21631109384525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-28T17:38:20.458424"}