alvarobartt HF staff boxin-wbx commited on
Commit
b5731cf
·
verified ·
0 Parent(s):

Duplicate from nvidia/NVLM-D-72B

Browse files

Co-authored-by: Boxin Wang <[email protected]>

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +35 -0
  2. Dockerfile +14 -0
  3. README.md +311 -0
  4. config.json +141 -0
  5. configuration_intern_vit.py +119 -0
  6. configuration_nvlm_d.py +100 -0
  7. conversation.py +358 -0
  8. incl_licenses/LICENSE +21 -0
  9. incl_licenses/LICENSE_2 +201 -0
  10. merges.txt +0 -0
  11. model-00001-of-00046.safetensors +3 -0
  12. model-00002-of-00046.safetensors +3 -0
  13. model-00003-of-00046.safetensors +3 -0
  14. model-00004-of-00046.safetensors +3 -0
  15. model-00005-of-00046.safetensors +3 -0
  16. model-00006-of-00046.safetensors +3 -0
  17. model-00007-of-00046.safetensors +3 -0
  18. model-00008-of-00046.safetensors +3 -0
  19. model-00009-of-00046.safetensors +3 -0
  20. model-00010-of-00046.safetensors +3 -0
  21. model-00011-of-00046.safetensors +3 -0
  22. model-00012-of-00046.safetensors +3 -0
  23. model-00013-of-00046.safetensors +3 -0
  24. model-00014-of-00046.safetensors +3 -0
  25. model-00015-of-00046.safetensors +3 -0
  26. model-00016-of-00046.safetensors +3 -0
  27. model-00017-of-00046.safetensors +3 -0
  28. model-00018-of-00046.safetensors +3 -0
  29. model-00019-of-00046.safetensors +3 -0
  30. model-00020-of-00046.safetensors +3 -0
  31. model-00021-of-00046.safetensors +3 -0
  32. model-00022-of-00046.safetensors +3 -0
  33. model-00023-of-00046.safetensors +3 -0
  34. model-00024-of-00046.safetensors +3 -0
  35. model-00025-of-00046.safetensors +3 -0
  36. model-00026-of-00046.safetensors +3 -0
  37. model-00027-of-00046.safetensors +3 -0
  38. model-00028-of-00046.safetensors +3 -0
  39. model-00029-of-00046.safetensors +3 -0
  40. model-00030-of-00046.safetensors +3 -0
  41. model-00031-of-00046.safetensors +3 -0
  42. model-00032-of-00046.safetensors +3 -0
  43. model-00033-of-00046.safetensors +3 -0
  44. model-00034-of-00046.safetensors +3 -0
  45. model-00035-of-00046.safetensors +3 -0
  46. model-00036-of-00046.safetensors +3 -0
  47. model-00037-of-00046.safetensors +3 -0
  48. model-00038-of-00046.safetensors +3 -0
  49. model-00039-of-00046.safetensors +3 -0
  50. model-00040-of-00046.safetensors +3 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
Dockerfile ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM nvcr.io/nvidia/pytorch:23.09-py3
2
+
3
+ RUN pip install transformers==4.39.3
4
+
5
+ RUN pip install accelerate==0.34.2
6
+
7
+ RUN pip install datasets==2.18.0
8
+
9
+ RUN pip install timm==1.0.9
10
+
11
+ RUN pip install anls==0.0.2
12
+
13
+ RUN pip install pycocoevalcap==1.2
14
+
README.md ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ pipeline_tag: image-text-to-text
6
+ tags:
7
+ - nvidia
8
+ - NVLM
9
+ - pytorch
10
+ - multimodal
11
+ - conversational
12
+ library_name: transformers
13
+ ---
14
+
15
+ <p align="center">
16
+ <img src="nvlm-logo-light.png" alt="Image Description" width="300" >
17
+ </p>
18
+
19
+
20
+
21
+ ## Model Details
22
+
23
+ Today (September 17th, 2024), we introduce [NVLM 1.0](https://arxiv.org/abs/2409.11402), a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training.
24
+
25
+ In this repo, we are open-sourcing NVLM-1.0-D-72B (decoder-only architecture), the decoder-only model weights and code for the community.
26
+
27
+ ## Other Resources
28
+ [Inference Code (HF)](https://huggingface.co/nvidia/NVLM-D-72B/tree/main) &ensp; [Training Code (Coming soon)]() &ensp; [Website](https://research.nvidia.com/labs/adlr/NVLM-1/) &ensp; [Paper](https://arxiv.org/abs/2409.11402)
29
+
30
+ ## Benchmark Results
31
+ We train our model with legacy [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/legacy) and adapt the codebase to Huggingface for model hosting, reproducibility, and inference.
32
+ We observe numerical differences between the Megatron and Huggingface codebases, which are within the expected range of variation.
33
+ We provide the results from both the Huggingface codebase and the Megatron codebase for reproducibility and comparison with other models.
34
+
35
+ Results (as of September 17th, 2024) in the multimodal benchmarks are as follows:
36
+
37
+ ### Vision-language Benchmarks
38
+
39
+ | Benchmark | MMMU (val / test) | MathVista | OCRBench | AI2D | ChartQA | DocVQA | TextVQA | RealWorldQA | VQAv2 |
40
+ |------------------------------|-------------------|-----------|----------|------|---------|--------|---------|-------------|-------|
41
+ | NVLM-D 1.0 72B (Huggingface) | 58.7 / 54.9 | 65.2 | 852 | 94.2 | 86.0 | 92.6 | 82.6 | 69.5 | 85.4 |
42
+ | NVLM-D 1.0 72B (Megatron) | 59.7 / 54.6 | 65.2 | 853 | 94.2 | 86.0 | 92.6 | 82.1 | 69.7 | 85.4 |
43
+ | Llama 3.2 90B | 60.3 / - | 57.3 | - | 92.3 | 85.5 | 90.1 | - | - | 78.1 |
44
+ | Llama 3-V 70B | 60.6 / - | - | - | 93.0 | 83.2 | 92.2 | 83.4 | - | 79.1 |
45
+ | Llama 3-V 405B | 64.5 / - | - | - | 94.1 | 85.8 | 92.6 | 84.8 | - | 80.2 |
46
+ | InternVL2-Llama3-76B | 55.2 / - | 65.5 | 839 | 94.8 | 88.4 | 94.1 | 84.4 | 72.2 | - |
47
+ | GPT-4V | 56.8 / 55.7 | 49.9 | 645 | 78.2 | 78.5 | 88.4 | 78.0 | 61.4 | 77.2 |
48
+ | GPT-4o | 69.1 / - | 63.8 | 736 | 94.2 | 85.7 | 92.8 | - | - | - |
49
+ | Claude 3.5 Sonnet | 68.3 / - | 67.7 | 788 | 94.7 | 90.8 | 95.2 | - | - | - |
50
+ | Gemini 1.5 Pro (Aug 2024) | 62.2 / - | 63.9 | 754 | 94.4 | 87.2 | 93.1 | 78.7 | 70.4 | 80.2 |
51
+
52
+ ### Text-only Benchmarks
53
+
54
+ | Tasks | Backbone LLM | MMLU | GSM8K | MATH | HumanEval | Avg. Accuracy |
55
+ |------------------------------|--------------|------|-------|------|-----------|------------------|
56
+ | **Proprietary** | | | | | | |
57
+ | GPT-4.0 | N/A | 88.7 | - | 76.6 | 90.2 | - |
58
+ | Gemini Pro 1.5 (Aug 2024) | N/A | 85.9 | 90.8 | 67.7 | 84.1 | 82.1 |
59
+ | Claude 3.5 Sonnet | N/A | 88.7 | 96.4 | 71.1 | 92.0 | 87.0 |
60
+ | **Open LLM** | | | | | | |
61
+ | (a) Nous-Hermes-2-Yi-34B | N/A | 75.5 | 78.6 | 21.8 | 43.3 | 54.8 |
62
+ | (b) Qwen-72B-Instruct | N/A | 82.3 | 91.1 | 59.7 | 86.0 | 79.8 |
63
+ | (c) Llama-3-70B-Instruct | N/A | 82.0 | 93.0 | 51.0 | 81.7 | 76.6 |
64
+ | (d) Llama-3.1-70B-Instruct | N/A | 83.6 | 95.1 | 68.0 | 80.5 | 81.8 |
65
+ | (e) Llama-3.1-405B-Instruct | N/A | 87.3 | 96.8 | 73.8 | 89.0 | 86.7 |
66
+ | **Open Multimodal LLM** | | | | | | |
67
+ | VILA-1.5 40B | (a) | 73.3 | 67.5 | 16.8 | 34.1 | 🥶 47.9 (-6.9) |
68
+ | LLaVA-OneVision 72B | (b) | 80.6 | 89.9 | 49.2 | 74.4 | 🥶 73.5 (-6.3) |
69
+ | InternVL-2-Llama3-76B | (c) | 78.5 | 87.1 | 42.5 | 71.3 | 🥶 69.9 (-6.7) |
70
+ | *Llama 3-V 70B | (d) | 83.6 | 95.1 | 68.0 | 80.5 | 🙂 81.8 (0) |
71
+ | *Llama 3-V 405B | (e) | 87.3 | 96.8 | 73.8 | 89.0 | 🙂 86.7 (0) |
72
+ | NVLM-D 1.0 72B (Megatron) | (b) | 82.0 | 92.9 | 73.1 | 88.4 | 🥳 84.1 (+4.3) |
73
+ | NVLM-D 1.0 72B (Huggingface) | (b) | 81.7 | 93.2 | 73.1 | 89.0 | 🥳 84.3 (+4.5) |
74
+
75
+
76
+ ## How to use
77
+
78
+ When converting Megatron checkpoint to Huggingface, we adapt [InternVL codebase](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) to support model loading and multi-GPU inference in HF.
79
+ We also use the tokenizer from [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/tree/main) when adapting the tokenizer to Huggingface, as it contains extra special tokens for vision tasks, e.g., `<|vision_pad|>`.
80
+ We train NVLM-1.0-D-72B based on the [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct/tree/main) text-only model and [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) ViT model with our large-scale high-quality multimodal dataset.
81
+ For training code, please refer to [Megatron-LM (Coming soon)]().
82
+
83
+
84
+ ### Prepare the environment
85
+
86
+ We provide a docker build file in the [Dockerfile](Dockerfile) for reproduction.
87
+
88
+ The docker image is based on `nvcr.io/nvidia/pytorch:23.09-py3`.
89
+
90
+ *Note: We observe that different transformer versions / CUDA versions / docker versions can lead to slight benchmark number differences. We recommend using the Dockerfile above for precise reproduction.*
91
+
92
+ ### Model loading
93
+
94
+ ```python
95
+ import torch
96
+ from transformers import AutoModel
97
+
98
+ path = "nvidia/NVLM-D-72B"
99
+ model = AutoModel.from_pretrained(
100
+ path,
101
+ torch_dtype=torch.bfloat16,
102
+ low_cpu_mem_usage=True,
103
+ use_flash_attn=False,
104
+ trust_remote_code=True).eval()
105
+ ```
106
+
107
+ ### Multiple GPUs
108
+
109
+ The model can be loaded on multiple GPUs as follows:
110
+
111
+ ```python
112
+ import torch
113
+ import math
114
+ from transformers import AutoModel
115
+
116
+ def split_model():
117
+ device_map = {}
118
+ world_size = torch.cuda.device_count()
119
+ num_layers = 80
120
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
121
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
122
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
123
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
124
+ layer_cnt = 0
125
+ for i, num_layer in enumerate(num_layers_per_gpu):
126
+ for j in range(num_layer):
127
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
128
+ layer_cnt += 1
129
+ device_map['vision_model'] = 0
130
+ device_map['mlp1'] = 0
131
+ device_map['language_model.model.tok_embeddings'] = 0
132
+ device_map['language_model.model.embed_tokens'] = 0
133
+ device_map['language_model.output'] = 0
134
+ device_map['language_model.model.norm'] = 0
135
+ device_map['language_model.lm_head'] = 0
136
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
137
+
138
+ return device_map
139
+
140
+ path = "nvidia/NVLM-D-72B"
141
+ device_map = split_model()
142
+ model = AutoModel.from_pretrained(
143
+ path,
144
+ torch_dtype=torch.bfloat16,
145
+ low_cpu_mem_usage=True,
146
+ use_flash_attn=False,
147
+ trust_remote_code=True,
148
+ device_map=device_map).eval()
149
+ ```
150
+
151
+
152
+ ### Inference
153
+
154
+ ```python
155
+ import torch
156
+ from transformers import AutoTokenizer, AutoModel
157
+ import math
158
+ from PIL import Image
159
+ import torchvision.transforms as T
160
+ from torchvision.transforms.functional import InterpolationMode
161
+
162
+
163
+ def split_model():
164
+ device_map = {}
165
+ world_size = torch.cuda.device_count()
166
+ num_layers = 80
167
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
168
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
169
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
170
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
171
+ layer_cnt = 0
172
+ for i, num_layer in enumerate(num_layers_per_gpu):
173
+ for j in range(num_layer):
174
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
175
+ layer_cnt += 1
176
+ device_map['vision_model'] = 0
177
+ device_map['mlp1'] = 0
178
+ device_map['language_model.model.tok_embeddings'] = 0
179
+ device_map['language_model.model.embed_tokens'] = 0
180
+ device_map['language_model.output'] = 0
181
+ device_map['language_model.model.norm'] = 0
182
+ device_map['language_model.lm_head'] = 0
183
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
184
+
185
+ return device_map
186
+
187
+
188
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
189
+ IMAGENET_STD = (0.229, 0.224, 0.225)
190
+
191
+
192
+ def build_transform(input_size):
193
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
194
+ transform = T.Compose([
195
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
196
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
197
+ T.ToTensor(),
198
+ T.Normalize(mean=MEAN, std=STD)
199
+ ])
200
+ return transform
201
+
202
+
203
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
204
+ best_ratio_diff = float('inf')
205
+ best_ratio = (1, 1)
206
+ area = width * height
207
+ for ratio in target_ratios:
208
+ target_aspect_ratio = ratio[0] / ratio[1]
209
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
210
+ if ratio_diff < best_ratio_diff:
211
+ best_ratio_diff = ratio_diff
212
+ best_ratio = ratio
213
+ elif ratio_diff == best_ratio_diff:
214
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
215
+ best_ratio = ratio
216
+ return best_ratio
217
+
218
+
219
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
220
+ orig_width, orig_height = image.size
221
+ aspect_ratio = orig_width / orig_height
222
+
223
+ # calculate the existing image aspect ratio
224
+ target_ratios = set(
225
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
226
+ i * j <= max_num and i * j >= min_num)
227
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
228
+
229
+ # find the closest aspect ratio to the target
230
+ target_aspect_ratio = find_closest_aspect_ratio(
231
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
232
+
233
+ # calculate the target width and height
234
+ target_width = image_size * target_aspect_ratio[0]
235
+ target_height = image_size * target_aspect_ratio[1]
236
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
237
+
238
+ # resize the image
239
+ resized_img = image.resize((target_width, target_height))
240
+ processed_images = []
241
+ for i in range(blocks):
242
+ box = (
243
+ (i % (target_width // image_size)) * image_size,
244
+ (i // (target_width // image_size)) * image_size,
245
+ ((i % (target_width // image_size)) + 1) * image_size,
246
+ ((i // (target_width // image_size)) + 1) * image_size
247
+ )
248
+ # split the image
249
+ split_img = resized_img.crop(box)
250
+ processed_images.append(split_img)
251
+ assert len(processed_images) == blocks
252
+ if use_thumbnail and len(processed_images) != 1:
253
+ thumbnail_img = image.resize((image_size, image_size))
254
+ processed_images.append(thumbnail_img)
255
+ return processed_images
256
+
257
+
258
+ def load_image(image_file, input_size=448, max_num=12):
259
+ image = Image.open(image_file).convert('RGB')
260
+ transform = build_transform(input_size=input_size)
261
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
262
+ pixel_values = [transform(image) for image in images]
263
+ pixel_values = torch.stack(pixel_values)
264
+ return pixel_values
265
+
266
+ path = "nvidia/NVLM-D-72B"
267
+ device_map = split_model()
268
+ model = AutoModel.from_pretrained(
269
+ path,
270
+ torch_dtype=torch.bfloat16,
271
+ low_cpu_mem_usage=True,
272
+ use_flash_attn=False,
273
+ trust_remote_code=True,
274
+ device_map=device_map).eval()
275
+
276
+ print(model)
277
+
278
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
279
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
280
+
281
+ # pure-text conversation
282
+ question = 'Hello, who are you?'
283
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
284
+ print(f'User: {question}\nAssistant: {response}')
285
+
286
+ # single-image single-round conversation
287
+ pixel_values = load_image('path/to/your/example/image.jpg', max_num=6).to(
288
+ torch.bfloat16)
289
+ question = '<image>\nPlease describe the image shortly.'
290
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
291
+ print(f'User: {question}\nAssistant: {response}')
292
+ ```
293
+
294
+
295
+ ## Correspondence to
296
+ Wenliang Dai* ([email protected]), Nayeon Lee* ([email protected]), Boxin Wang* ([email protected]), Zhuolin Yang* ([email protected]), Wei Ping* ([email protected])
297
+
298
+ *Equal contribution
299
+
300
+ ## Citation
301
+ <pre>
302
+ @article{nvlm2024,
303
+ title={NVLM: Open Frontier-Class Multimodal LLMs},
304
+ author={Dai, Wenliang and Lee, Nayeon and Wang, Boxin and Yang, Zhuolin and Liu, Zihan and Barker, Jon and Rintamaki, Tuomas and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
305
+ journal={arXiv preprint},
306
+ year={2024}}
307
+ </pre>
308
+
309
+
310
+ ## License
311
+ The use of this model is governed by the [cc-by-nc-4.0](https://spdx.org/licenses/CC-BY-NC-4.0)
config.json ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "NVLM_D"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_nvlm_d.NVLM_D_Config",
8
+ "AutoModel": "modeling_nvlm_d.NVLM_D_Model",
9
+ "AutoModelForCausalLM": "modeling_nvlm_d.NVLM_D_Model"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "Qwen/Qwen2-72B-Instruct",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "Qwen2ForCausalLM"
19
+ ],
20
+ "attention_bias": true,
21
+ "attention_dropout": 0.0,
22
+ "bad_words_ids": null,
23
+ "begin_suppress_tokens": null,
24
+ "bos_token_id": 151643,
25
+ "chunk_size_feed_forward": 0,
26
+ "cross_attention_hidden_size": null,
27
+ "decoder_start_token_id": null,
28
+ "diversity_penalty": 0.0,
29
+ "do_sample": false,
30
+ "early_stopping": false,
31
+ "encoder_no_repeat_ngram_size": 0,
32
+ "eos_token_id": 151645,
33
+ "exponential_decay_length_penalty": null,
34
+ "finetuning_task": null,
35
+ "forced_bos_token_id": null,
36
+ "forced_eos_token_id": null,
37
+ "hidden_act": "silu",
38
+ "hidden_size": 8192,
39
+ "id2label": {
40
+ "0": "LABEL_0",
41
+ "1": "LABEL_1"
42
+ },
43
+ "initializer_range": 0.02,
44
+ "intermediate_size": 29568,
45
+ "is_decoder": false,
46
+ "is_encoder_decoder": false,
47
+ "label2id": {
48
+ "LABEL_0": 0,
49
+ "LABEL_1": 1
50
+ },
51
+ "length_penalty": 1.0,
52
+ "max_length": 20,
53
+ "max_position_embeddings": 32768,
54
+ "min_length": 0,
55
+ "mlp_bias": false,
56
+ "model_type": "llama",
57
+ "no_repeat_ngram_size": 0,
58
+ "num_attention_heads": 64,
59
+ "num_beam_groups": 1,
60
+ "num_beams": 1,
61
+ "num_hidden_layers": 80,
62
+ "num_key_value_heads": 8,
63
+ "num_return_sequences": 1,
64
+ "output_attentions": false,
65
+ "output_hidden_states": false,
66
+ "output_scores": false,
67
+ "pad_token_id": null,
68
+ "prefix": null,
69
+ "pretraining_tp": 1,
70
+ "problem_type": null,
71
+ "pruned_heads": {},
72
+ "remove_invalid_values": false,
73
+ "repetition_penalty": 1.0,
74
+ "return_dict": true,
75
+ "return_dict_in_generate": false,
76
+ "rms_norm_eps": 1e-06,
77
+ "rope_scaling": {
78
+ "factor": 3.0,
79
+ "type": "dynamic"
80
+ },
81
+ "rope_theta": 1000000.0,
82
+ "sep_token_id": null,
83
+ "suppress_tokens": null,
84
+ "task_specific_params": null,
85
+ "temperature": 1.0,
86
+ "tf_legacy_loss": false,
87
+ "tie_encoder_decoder": false,
88
+ "tie_word_embeddings": false,
89
+ "tokenizer_class": null,
90
+ "top_k": 1,
91
+ "top_p": 0,
92
+ "torch_dtype": "bfloat16",
93
+ "torchscript": false,
94
+ "transformers_version": "4.39.3",
95
+ "typical_p": 1.0,
96
+ "use_bfloat16": true,
97
+ "use_cache": true,
98
+ "vocab_size": 152064
99
+ },
100
+ "max_dynamic_patch": 6,
101
+ "min_dynamic_patch": 1,
102
+ "model_type": "NVLM_D",
103
+ "ps_version": "v2",
104
+ "select_layer": -1,
105
+ "template": "chatml",
106
+ "torch_dtype": "bfloat16",
107
+ "transformers_version": null,
108
+ "use_backbone_lora": 0,
109
+ "use_llm_lora": 0,
110
+ "use_thumbnail": true,
111
+ "vision_config": {
112
+ "architectures": [
113
+ "InternVisionModel"
114
+ ],
115
+ "attention_dropout": 0.0,
116
+ "drop_path_rate": 0.0,
117
+ "dropout": 0.0,
118
+ "hidden_act": "gelu",
119
+ "hidden_size": 3200,
120
+ "image_size": 448,
121
+ "initializer_factor": 0.1,
122
+ "initializer_range": 1e-10,
123
+ "intermediate_size": 12800,
124
+ "layer_norm_eps": 1e-06,
125
+ "model_type": "intern_vit_6b",
126
+ "norm_type": "rms_norm",
127
+ "num_attention_heads": 25,
128
+ "num_channels": 3,
129
+ "num_hidden_layers": 45,
130
+ "output_attentions": false,
131
+ "output_hidden_states": false,
132
+ "patch_size": 14,
133
+ "qk_normalization": true,
134
+ "qkv_bias": false,
135
+ "return_dict": true,
136
+ "torch_dtype": "bfloat16",
137
+ "transformers_version": "4.39.3",
138
+ "use_bfloat16": true,
139
+ "use_flash_attn": true
140
+ }
141
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_nvlm_d.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Adapted from https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B under MIT License
3
+ # LICENSE is in incl_licenses directory.
4
+ # --------------------------------------------------------
5
+
6
+ import copy
7
+
8
+ from transformers import AutoConfig, Qwen2Config
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ from .configuration_intern_vit import InternVisionConfig
13
+
14
+ logger = logging.get_logger(__name__)
15
+
16
+
17
+ class NVLM_D_Config(PretrainedConfig):
18
+ model_type = 'NVLM_D'
19
+ is_composition = True
20
+
21
+ def __init__(
22
+ self,
23
+ vision_config=None,
24
+ llm_config=None,
25
+ use_backbone_lora=0,
26
+ use_llm_lora=0,
27
+ select_layer=-1,
28
+ force_image_size=None,
29
+ downsample_ratio=0.5,
30
+ template=None,
31
+ dynamic_image_size=False,
32
+ use_thumbnail=False,
33
+ ps_version='v1',
34
+ min_dynamic_patch=1,
35
+ max_dynamic_patch=6,
36
+ **kwargs
37
+ ):
38
+ super().__init__(**kwargs)
39
+
40
+ # Handle vision_config initialization
41
+ if vision_config is None:
42
+ vision_config = {}
43
+ logger.info('vision_config is None. Initializing InternVisionConfig with default values.')
44
+
45
+ # Handle llm_config initialization
46
+ if llm_config is None:
47
+ llm_config = {}
48
+ logger.info('llm_config is None. Initializing LLM Config with default values.')
49
+
50
+ self.vision_config = InternVisionConfig(**vision_config)
51
+
52
+ # Check for supported architecture
53
+ if llm_config.get('architectures', [None])[0] == 'Qwen2ForCausalLM':
54
+ self.llm_config = Qwen2Config(**llm_config)
55
+ else:
56
+ raise ValueError(f"Unsupported architecture: {llm_config.get('architectures', [None])[0]}")
57
+
58
+ # Assign configuration values
59
+ self.use_backbone_lora = use_backbone_lora
60
+ self.use_llm_lora = use_llm_lora
61
+ self.select_layer = select_layer
62
+ self.force_image_size = force_image_size
63
+ self.downsample_ratio = downsample_ratio
64
+ self.template = template
65
+ self.dynamic_image_size = dynamic_image_size
66
+ self.use_thumbnail = use_thumbnail
67
+ self.ps_version = ps_version # Pixel shuffle version
68
+ self.min_dynamic_patch = min_dynamic_patch
69
+ self.max_dynamic_patch = max_dynamic_patch
70
+
71
+ # Log important parameters
72
+ logger.info(f'vision_select_layer: {self.select_layer}')
73
+ logger.info(f'ps_version: {self.ps_version}')
74
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
75
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
76
+
77
+ def to_dict(self):
78
+ """
79
+ Serializes this instance to a Python dictionary. Overrides the default `PretrainedConfig.to_dict`.
80
+
81
+ Returns:
82
+ Dict[str, Any]: Dictionary of all the attributes that make up this configuration instance.
83
+ """
84
+ output = copy.deepcopy(self.__dict__)
85
+ output['vision_config'] = self.vision_config.to_dict()
86
+ output['llm_config'] = self.llm_config.to_dict()
87
+ output['model_type'] = self.model_type
88
+ output['use_backbone_lora'] = self.use_backbone_lora
89
+ output['use_llm_lora'] = self.use_llm_lora
90
+ output['select_layer'] = self.select_layer
91
+ output['force_image_size'] = self.force_image_size
92
+ output['downsample_ratio'] = self.downsample_ratio
93
+ output['template'] = self.template
94
+ output['dynamic_image_size'] = self.dynamic_image_size
95
+ output['use_thumbnail'] = self.use_thumbnail
96
+ output['ps_version'] = self.ps_version
97
+ output['min_dynamic_patch'] = self.min_dynamic_patch
98
+ output['max_dynamic_patch'] = self.max_dynamic_patch
99
+
100
+ return output
conversation.py ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py under the Apache License 2.0.
3
+ LICENSE is in incl_licenses directory.
4
+
5
+ Conversation prompt templates.
6
+
7
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
8
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
9
+ """
10
+
11
+ import dataclasses
12
+ from enum import IntEnum, auto
13
+ from typing import Any, Dict, List, Tuple, Union
14
+
15
+
16
+ class SeparatorStyle(IntEnum):
17
+ """Separator styles."""
18
+
19
+ ADD_COLON_SINGLE = auto()
20
+ ADD_COLON_TWO = auto()
21
+ ADD_COLON_SPACE_SINGLE = auto()
22
+ NO_COLON_SINGLE = auto()
23
+ NO_COLON_TWO = auto()
24
+ ADD_NEW_LINE_SINGLE = auto()
25
+ LLAMA2 = auto()
26
+ CHATGLM = auto()
27
+ CHATML = auto()
28
+ CHATINTERN = auto()
29
+ DOLLY = auto()
30
+ RWKV = auto()
31
+ PHOENIX = auto()
32
+ ROBIN = auto()
33
+ FALCON_CHAT = auto()
34
+ CHATGLM3 = auto()
35
+ INTERNVL_ZH = auto()
36
+ MPT = auto()
37
+
38
+
39
+ @dataclasses.dataclass
40
+ class Conversation:
41
+ """A class that manages prompt templates and keeps all conversation history."""
42
+
43
+ # The name of this template
44
+ name: str
45
+ # The template of the system prompt
46
+ system_template: str = '{system_message}'
47
+ # The system message
48
+ system_message: str = ''
49
+ # The names of two roles
50
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
51
+ # All messages. Each item is (role, message).
52
+ messages: List[List[str]] = ()
53
+ # The number of few shot examples
54
+ offset: int = 0
55
+ # The separator style and configurations
56
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
57
+ sep: str = '\n'
58
+ sep2: str = None
59
+ # Stop criteria (the default one is EOS token)
60
+ stop_str: Union[str, List[str]] = None
61
+ # Stops generation if meeting any token in this list
62
+ stop_token_ids: List[int] = None
63
+
64
+ def get_prompt(self) -> str:
65
+ """Get the prompt for generation."""
66
+ system_prompt = self.system_template.format(system_message=self.system_message)
67
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
68
+ ret = system_prompt + self.sep
69
+ for role, message in self.messages:
70
+ if message:
71
+ ret += role + ': ' + message + self.sep
72
+ else:
73
+ ret += role + ':'
74
+ return ret
75
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
76
+ seps = [self.sep, self.sep2]
77
+ ret = system_prompt + seps[0]
78
+ for i, (role, message) in enumerate(self.messages):
79
+ if message:
80
+ ret += role + ': ' + message + seps[i % 2]
81
+ else:
82
+ ret += role + ':'
83
+ return ret
84
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
85
+ ret = system_prompt + self.sep
86
+ for role, message in self.messages:
87
+ if message:
88
+ ret += role + ': ' + message + self.sep
89
+ else:
90
+ ret += role + ': ' # must be end with a space
91
+ return ret
92
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
93
+ ret = '' if system_prompt == '' else system_prompt + self.sep
94
+ for role, message in self.messages:
95
+ if message:
96
+ ret += role + '\n' + message + self.sep
97
+ else:
98
+ ret += role + '\n'
99
+ return ret
100
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
101
+ ret = system_prompt
102
+ for role, message in self.messages:
103
+ if message:
104
+ ret += role + message + self.sep
105
+ else:
106
+ ret += role
107
+ return ret
108
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
109
+ seps = [self.sep, self.sep2]
110
+ ret = system_prompt
111
+ for i, (role, message) in enumerate(self.messages):
112
+ if message:
113
+ ret += role + message + seps[i % 2]
114
+ else:
115
+ ret += role
116
+ return ret
117
+ elif self.sep_style == SeparatorStyle.RWKV:
118
+ ret = system_prompt
119
+ for i, (role, message) in enumerate(self.messages):
120
+ if message:
121
+ ret += (
122
+ role
123
+ + ': '
124
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
125
+ )
126
+ ret += '\n\n'
127
+ else:
128
+ ret += role + ':'
129
+ return ret
130
+ elif self.sep_style == SeparatorStyle.LLAMA2:
131
+ seps = [self.sep, self.sep2]
132
+ if self.system_message:
133
+ ret = system_prompt
134
+ else:
135
+ ret = '[INST] '
136
+ for i, (role, message) in enumerate(self.messages):
137
+ tag = self.roles[i % 2]
138
+ if message:
139
+ if i == 0:
140
+ ret += message + ' '
141
+ else:
142
+ ret += tag + ' ' + message + seps[i % 2]
143
+ else:
144
+ ret += tag
145
+ return ret
146
+ elif self.sep_style == SeparatorStyle.CHATGLM:
147
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
148
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
149
+ round_add_n = 1 if self.name == 'chatglm2' else 0
150
+ if system_prompt:
151
+ ret = system_prompt + self.sep
152
+ else:
153
+ ret = ''
154
+
155
+ for i, (role, message) in enumerate(self.messages):
156
+ if i % 2 == 0:
157
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
158
+
159
+ if message:
160
+ ret += f'{role}:{message}{self.sep}'
161
+ else:
162
+ ret += f'{role}:'
163
+ return ret
164
+ elif self.sep_style == SeparatorStyle.CHATML:
165
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
166
+ for role, message in self.messages:
167
+ if message:
168
+ ret += role + '\n' + message + self.sep + '\n'
169
+ else:
170
+ ret += role + '\n'
171
+ return ret
172
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
173
+ ret = ''
174
+ if self.system_message:
175
+ ret += system_prompt
176
+ for role, message in self.messages:
177
+ if message:
178
+ ret += role + '\n' + ' ' + message
179
+ else:
180
+ ret += role
181
+ return ret
182
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
183
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
184
+ seps = [self.sep, self.sep2]
185
+ ret = system_prompt
186
+ for i, (role, message) in enumerate(self.messages):
187
+ # if i % 2 == 0:
188
+ # ret += "<s>"
189
+ if message:
190
+ ret += role + ':' + message + seps[i % 2] + '\n'
191
+ else:
192
+ ret += role + ':'
193
+ return ret
194
+ elif self.sep_style == SeparatorStyle.DOLLY:
195
+ seps = [self.sep, self.sep2]
196
+ ret = system_prompt
197
+ for i, (role, message) in enumerate(self.messages):
198
+ if message:
199
+ ret += role + ':\n' + message + seps[i % 2]
200
+ if i % 2 == 1:
201
+ ret += '\n\n'
202
+ else:
203
+ ret += role + ':\n'
204
+ return ret
205
+ elif self.sep_style == SeparatorStyle.PHOENIX:
206
+ ret = system_prompt
207
+ for role, message in self.messages:
208
+ if message:
209
+ ret += role + ': ' + '<s>' + message + '</s>'
210
+ else:
211
+ ret += role + ': ' + '<s>'
212
+ return ret
213
+ elif self.sep_style == SeparatorStyle.ROBIN:
214
+ ret = system_prompt + self.sep
215
+ for role, message in self.messages:
216
+ if message:
217
+ ret += role + ':\n' + message + self.sep
218
+ else:
219
+ ret += role + ':\n'
220
+ return ret
221
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
222
+ ret = ''
223
+ if self.system_message:
224
+ ret += system_prompt + self.sep
225
+ for role, message in self.messages:
226
+ if message:
227
+ ret += role + ': ' + message + self.sep
228
+ else:
229
+ ret += role + ':'
230
+
231
+ return ret
232
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
233
+ seps = [self.sep, self.sep2]
234
+ ret = self.system_message + seps[0]
235
+ for i, (role, message) in enumerate(self.messages):
236
+ if message:
237
+ ret += role + ': ' + message + seps[i % 2]
238
+ else:
239
+ ret += role + ':'
240
+ return ret
241
+ elif self.sep_style == SeparatorStyle.MPT:
242
+ ret = system_prompt + self.sep
243
+ for role, message in self.messages:
244
+ if message:
245
+ if type(message) is tuple:
246
+ message, _, _ = message
247
+ ret += role + message + self.sep
248
+ else:
249
+ ret += role
250
+ return ret
251
+ else:
252
+ raise ValueError(f'Invalid style: {self.sep_style}')
253
+
254
+ def set_system_message(self, system_message: str):
255
+ """Set the system message."""
256
+ self.system_message = system_message
257
+
258
+ def append_message(self, role: str, message: str):
259
+ """Append a new message."""
260
+ self.messages.append([role, message])
261
+
262
+ def update_last_message(self, message: str):
263
+ """Update the last output.
264
+
265
+ The last message is typically set to be None when constructing the prompt,
266
+ so we need to update it in-place after getting the response from a model.
267
+ """
268
+ self.messages[-1][1] = message
269
+
270
+ def to_gradio_chatbot(self):
271
+ """Convert the conversation to gradio chatbot format."""
272
+ ret = []
273
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
274
+ if i % 2 == 0:
275
+ ret.append([msg, None])
276
+ else:
277
+ ret[-1][-1] = msg
278
+ return ret
279
+
280
+ def to_openai_api_messages(self):
281
+ """Convert the conversation to OpenAI chat completion format."""
282
+ ret = [{'role': 'system', 'content': self.system_message}]
283
+
284
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
285
+ if i % 2 == 0:
286
+ ret.append({'role': 'user', 'content': msg})
287
+ else:
288
+ if msg is not None:
289
+ ret.append({'role': 'assistant', 'content': msg})
290
+ return ret
291
+
292
+ def copy(self):
293
+ return Conversation(
294
+ name=self.name,
295
+ system_template=self.system_template,
296
+ system_message=self.system_message,
297
+ roles=self.roles,
298
+ messages=[[x, y] for x, y in self.messages],
299
+ offset=self.offset,
300
+ sep_style=self.sep_style,
301
+ sep=self.sep,
302
+ sep2=self.sep2,
303
+ stop_str=self.stop_str,
304
+ stop_token_ids=self.stop_token_ids,
305
+ )
306
+
307
+ def dict(self):
308
+ return {
309
+ 'template_name': self.name,
310
+ 'system_message': self.system_message,
311
+ 'roles': self.roles,
312
+ 'messages': self.messages,
313
+ 'offset': self.offset,
314
+ }
315
+
316
+
317
+ # A global registry for all conversation templates
318
+ conv_templates: Dict[str, Conversation] = {}
319
+
320
+
321
+ def register_conv_template(template: Conversation, override: bool = False):
322
+ """Register a new conversation template."""
323
+ if not override:
324
+ assert (
325
+ template.name not in conv_templates
326
+ ), f'{template.name} has been registered.'
327
+
328
+ conv_templates[template.name] = template
329
+
330
+
331
+ def get_conv_template(name: str) -> Conversation:
332
+ """Get a conversation template."""
333
+ return conv_templates[name].copy()
334
+
335
+
336
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
337
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
338
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
339
+ # Therefore, they are completely equivalent during inference.
340
+
341
+ register_conv_template(
342
+ Conversation(
343
+ name='chatml',
344
+ system_template='<|im_start|>system\n{system_message}',
345
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
346
+ system_message='Answer the questions.',
347
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
348
+ sep_style=SeparatorStyle.MPT,
349
+ sep='<|im_end|>',
350
+ stop_token_ids=[
351
+ 2,
352
+ 92543,
353
+ 92542
354
+ ]
355
+ )
356
+ )
357
+
358
+
incl_licenses/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 OpenGVLab
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
incl_licenses/LICENSE_2 ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a78cdc2cb4c39111e3c409bae8058500c26ad66f939bd9fc367607de5a7b936
3
+ size 3732884232
model-00002-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8676f7b0455aa1155634426125f7a5ef2677327ec5b5157926d14528b222948d
3
+ size 3846327312
model-00003-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2a312cd5d4e8095cb613818a2f602f7ad07f1221c7b1967cfec833f833630bf
3
+ size 3846327312
model-00004-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:936e1fa418458a7cbe1bdb983b72066802738672bfa4a7a5954ce80b16cecab7
3
+ size 3846327312
model-00005-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12472f7508046c1901ca08d0f2680d622f4a0da91027097b98166d2df3bc707a
3
+ size 3846327312
model-00006-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d41bcb078fe921bc8671f7163a42eca9e3c8b2342a14cadae947992018445da
3
+ size 3846327312
model-00007-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11a80dca0ec39185b3c36bc118f2b4dfd85465d5349a41b378b9334b1792e7a8
3
+ size 3846327336
model-00008-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e61a2385a5be6c28b60f4b8850ed78d35ba96334f36678d85fb93953a470fe4f
3
+ size 3846327336
model-00009-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:658fa23e07154250009f6bc14485fa77e98315f9db18e0301140334a86ea847a
3
+ size 3846327336
model-00010-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d48b3d0e9749a0ea43d1f99acf6916b5e8c0392c29075fa7b249d7605db9124e
3
+ size 3846327336
model-00011-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efbc2d512bcb5477e23a7f4a4887a788ee0dfa6e711b2939818d7f4e48cbd9a6
3
+ size 3846327336
model-00012-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2047578d29d66084531761f53206b23fa753e6b669b6076a467c0eccff2357e6
3
+ size 3846327336
model-00013-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a1c696a1e707f1c58086a5890dc50cb1e74c5d04c60b0ec591725872977faa5
3
+ size 3846327336
model-00014-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed921455a6852117cd630f11958c72a7b93f5178f27b0510e077714f1c5cbff7
3
+ size 3846327336
model-00015-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32bd67190c85ad495b6515d1f0992162b57677a7581f0eb513765781a67eedf3
3
+ size 3846327336
model-00016-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc6943dd51fdb17d61e1776a2fb996f9bc881e3cd1f83bc83933837d18cc5e7
3
+ size 3846327336
model-00017-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83935d97a80083f6e5b6bd5ab497b130b0625736848ff145a460f8dbb600b72d
3
+ size 3846327336
model-00018-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f63f7979e9859c11b1c849547e7ff96c07f5fa2de3df7a388e1ff961f5ea8d1e
3
+ size 3846327336
model-00019-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a59dbd378197490411556841a67b6f537259f98deed3fc74135871aae9b96b62
3
+ size 3846327336
model-00020-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5dd6b704854ef4d640f2c731b7e3765ed8bb6de9c0d20ddb31edb57ef529c2f
3
+ size 3846327336
model-00021-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e0fda318009755689a0e2fc0b835251a60100f55d717ee029ced89ef94289c6
3
+ size 3846327336
model-00022-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e79e6f73ab02c8ea2063b2d75916ba56d023d876a3b9f271de00f014e70ef4ee
3
+ size 3846327336
model-00023-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afcd0207ec7aae990e0a1ec35ca841df9dedf20ee7461e0dd1af5c380777da0c
3
+ size 3846327336
model-00024-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ff60a64122e8e0b67cf639b27155be5cb63cbaa6807b76842d529ad2a43922a
3
+ size 3846327336
model-00025-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cc40acba46b35444e50fc53e03c2091947e903236c09c93049799b7c4e55a89
3
+ size 3846327336
model-00026-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e30326cac00519f1994d1344a2e9fcc905d8bce4d3142d53937e0b534f7736ab
3
+ size 3846327336
model-00027-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d404c28bd104d4c6b7c38cf498f9f8d6f89091435630c370141b8c931dfe6a4
3
+ size 3846327336
model-00028-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db0a9bd4c0d42e228ccba1182f7f64f6803a45969526ff2a3763d21d9ba720a2
3
+ size 3846327336
model-00029-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70804172e97c960e067d4b6b0c9a3c97ec8747acd6e61bec6a5d62b09934562c
3
+ size 3846327336
model-00030-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3849a92246ab4e49e346304401dc526ee1f7d26f2f7a281acfd8970bb3c0792
3
+ size 3846327336
model-00031-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c117d4fdc67ad25b508d53cc9de2fc991eaa8f0c29e2c85361dbee431b426740
3
+ size 3846327336
model-00032-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bc68e643780b8dc9ef47af669bb51033ab5d3229477c87efb647469d439b3cb
3
+ size 3846327336
model-00033-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9528688a3ab66602ba583b53577b22b8fc70e21436d824bc2cacf66b2e0d12d
3
+ size 3846327336
model-00034-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5304592b6b5b28154783f5d93404b9391638a64ae5fcd3b8720cda5f6b22618e
3
+ size 3846327336
model-00035-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c515b0ddc6dde630472717f931ea097dbc57ef51f1416c9af2ff4150a1c46502
3
+ size 3846327336
model-00036-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31f390b5fa800b1f23d96ad86ca6e56746a1a0bcbd1eac9c06308f6d10608023
3
+ size 3846327336
model-00037-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8e346877ab270aaff0f2d1ccad11f609601ba345e94f819ad0187355c164cb0
3
+ size 3846327336
model-00038-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee4e4bcf4092b2f3af48d3c611812cc6453af4f80c6e516583c37e038b35d813
3
+ size 3846327336
model-00039-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8454eeeaf944e1ce74702c2197d8d04a266e87e13288c4f528ba00b5d20824f
3
+ size 3846327336
model-00040-of-00046.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a7f563b879f85851630efab934cf23a809ad8a4d775d042118393efb484118c
3
+ size 3846327336