File size: 8,725 Bytes
c0b4944
 
e3a83ba
6dc859b
e3a83ba
12d978a
 
 
 
 
e3a83ba
12d978a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0b4944
5638d20
da52a7c
0887ad6
7725966
c0b4944
d09b9fd
 
3e09482
 
d09b9fd
3e09482
cc81004
2dc7aa5
e1dc218
e77baa4
bb5040a
1c16c76
 
d7c1025
d49a0c6
549ef2e
 
384eef2
67de768
 
e8b0f3f
1e87e04
699723b
1e87e04
699723b
e8b0f3f
e77baa4
 
21bb0de
8bb6577
 
6c6260b
8bb6577
 
e77baa4
d7c1025
d09b9fd
 
0d28425
d09b9fd
0d28425
e1dc218
 
 
b2f7082
1a566df
b1434bc
1a566df
65846b2
 
 
 
 
 
 
 
 
 
 
 
 
1a566df
 
b1434bc
e7ba366
 
28cd941
0f8cfbc
 
3e09482
2ca2901
ccffc78
ec5158b
0d7c6a6
1a566df
4d3000c
92ace14
12d978a
 
 
 
 
 
 
 
 
 
 
 
4d3000c
92ace14
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
language:
- en
license: llama2
library_name: transformers
tags:
- merge
base_model:
- sophosympatheia/Midnight-Rose-70B-v2.0.3
- codellama/CodeLlama-70b-Python-hf
pipeline_tag: text-generation
model-index:
- name: CodeRosa-70B-AB1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.53
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=altomek/CodeRosa-70B-AB1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.16
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=altomek/CodeRosa-70B-AB1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 59.87
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=altomek/CodeRosa-70B-AB1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 49.85
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=altomek/CodeRosa-70B-AB1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 81.29
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=altomek/CodeRosa-70B-AB1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 44.5
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=altomek/CodeRosa-70B-AB1
      name: Open LLM Leaderboard
---

#
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosa.png>
<a href="https://www.youtube.com/watch?v=DfXLf402I94" title="Dust of the Saturn - Dynatron" target="_blank">intro music...</a>

## CodeRosa-70B-AB1

I desired a model that could serve as an everyday helpful companion with some coding skills.
The idea was that Llama's censorship implies a deeper understanding of human emotions and I wanted this part of Llama to integrate into this merge.

Model adopted a task-oriented approach from CodeLlama Python and thus requires precise prompting. It can produce longer texts as well as shorter responses. It tends to avoid happy endings and instead surprises with open-ended scenarios inviting further interaction. It prefers spelling numbers over writing them down but YMMV.

I created this model for personal exploration and found it to be highly successful; thus, I chose to share it with the community. I would like to make next iteration of this model in future. Mission is the same: very nice bot, able to talk about variety of topics in a very emetional way with some kick for programming and with ability to teach some things, beside all this to be good text summarizer ideally with Polish language as available option. This is a purpose. Did I succed with this merge? I have to experiment with below two models more. I like this result, love how it aproaches problems, this was iteration worth publishing even thought it is not much tested!

Demo uses:
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaTalk1.png>
<br>
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaTalk2.png>
<br>
Some topics are best to be explored with as little additional instructions as possible
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaTalk3.png>
<br>
This model have empathy
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaWow.png>
<br>
It is creative
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaTables1png.png>
<br>
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaTables2png.png>
<br>
It makes mistakes but still is usefull
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaInfernces.png>
<br>
Context size of 11K did not yield satisfactory results... :P
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaNuts1.png>
<br>
but it can question its own actions.
<img src=https://huggingface.co./altomek/CodeRosa-70B-AB1/resolve/main/CodeRosaNuts2.png>
<br>
Please note that all demo inferences are run on CodeRosa-70B-AB1-3.92bpw-EXL2.

### Ingridients

 - [Midnight-Rose-70B-v2.0.3](https://huggingface.co./sophosympatheia/Midnight-Rose-70B-v2.0.3)

 - [CodeLlama-70b-Python-hf](https://huggingface.co./codellama/CodeLlama-70b-Python-hf)

### Settings

Setting from Midnight-Rose should work in SillyTavern. This is almost same what I use for testing. Model works ok with almost all samplers disabled to get more deterministic outputs, however temperature should be set to non zero value.

I use max_seq_len 8K with alpha_value 2.65. Model works also with 11K context when alpha_value is set to 5.5. Best outputs are with context around 6K however.

### Terms and Conditions of Use

The following table outlines the primary characteristics and intended uses of my CodeRosa-70B-AB1 models:

| Model Type | Purpose | Target Users | Key Features |
| --- | --- | --- | --- |
| **Censored** | Suitable for general audiences and sensitive topics | Educational institutions, families, and individuals seeking age-appropriate content | Restricts explicit or mature material |
| **Neutral** (<u>**this one</u>) | Balances accessibility with openness | Universities, researchers, and curious minds | Encourages exploration and intellectual exchange |
| Uncensored | Ideal for adults and specialized fields | Professionals, experts, and advanced scholars | Offers unfiltered access to diverse viewpoints and knowledge |

Please remember that all CodeRosa-70B-AB1 models operate under the llama2 license, so familiarize yourself with its terms and conditions before employing their content.


### Quants

- [GGUF quants](https://huggingface.co./altomek/CodeRosa-70B-AB1-GGUF)
- [6bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-6bpw-EXL2)
- [5bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-5bpw-EXL2)
- [4.9bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-4.9bpw-EXL2)
- [4.5bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-4.5bpw-EXL2)
- [4bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-4bpw-EXL2)
- [3.92bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-3.92bpw-EXL2) --> 40GB VRAM
- [3.5bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-3.5bpw-EXL2)
- [3bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-3bpw-EXL2) --> this and below quants do not represent model full potential!
- [2.4bpw](https://huggingface.co./altomek/CodeRosa-70B-AB1-2.4bpw-EXL2) --> 24GB VRAM
- [measurements](https://huggingface.co./altomek/measurements/resolve/main/CodeRosa-AB1_measurement.json) --> ExLlamav2 measurments


### [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_altomek__CodeRosa-70B-AB1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |64.04|
|AI2 Reasoning Challenge (25-Shot)|65.53|
|HellaSwag (10-Shot)              |83.16|
|MMLU (5-Shot)                    |59.87|
|TruthfulQA (0-shot)              |49.85|
|Winogrande (5-shot)              |81.29|
|GSM8k (5-shot)                   |44.50|


### PS
I welcome your comments about this model.

Made with CodeRosa-70B-AB1 :P