alphaduriendur commited on
Commit
f106de4
1 Parent(s): 21b88ad

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: ner-deBERTa-v2-x-large
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ config: conll2003
22
+ split: test
23
+ args: conll2003
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.7384370015948963
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.7377832861189801
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7381099991143388
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9460966943038657
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # ner-deBERTa-v2-x-large
43
+
44
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the conll2003 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3963
47
+ - Precision: 0.7384
48
+ - Recall: 0.7378
49
+ - F1: 0.7381
50
+ - Accuracy: 0.9461
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 3e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 64
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 5
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 219 | 0.4082 | 0.6932 | 0.7087 | 0.7009 | 0.9386 |
84
+ | No log | 2.0 | 439 | 0.4299 | 0.7467 | 0.6948 | 0.7198 | 0.9426 |
85
+ | 0.0094 | 3.0 | 658 | 0.4086 | 0.7435 | 0.7072 | 0.7249 | 0.9441 |
86
+ | 0.0094 | 4.0 | 878 | 0.3873 | 0.7426 | 0.7420 | 0.7423 | 0.9461 |
87
+ | 0.0054 | 4.99 | 1095 | 0.3963 | 0.7384 | 0.7378 | 0.7381 | 0.9461 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.30.2
93
+ - Pytorch 2.0.1+cu118
94
+ - Datasets 2.13.1
95
+ - Tokenizers 0.13.3