File size: 154,970 Bytes
ddfb4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20f43b
 
 
ddfb4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
---
language:
- bn
- gu
- hi
- kn
- ml
- mr
- ta
- te
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:112855
- loss:MSELoss
base_model: aloobun/d-mxbai-L8-embed
widget:
- source_sentence: (Laughter) And I've already hinted what that something is.
  sentences:
  - हे मजेशीर आहे, मी ट्विटर आणि फेसबुकवर विचारले असे की, "तुम्ही अगतिकतेची व्याख्या
    कशी कराल? तुम्हाला कशामुळे अगतिक वाटते?"
  - (हशा) आणि मी आधीच थोडीशी कल्पना दिली आहे ते काय करावे लागेल त्याबद्दल.
  - 'तर मी जेव्हा ह्या दालनात नजर फिरवितो माणसांवर, ज्यांनी मिळवलंय, किंवा मिळवायच्या
    मार्गावर आहेत, लक्षणीय यश, मी त्यांना हे लक्षात ठेवायला सांगतो: वाट पाहू नका.'
- source_sentence: I no longer try to be right; I choose to be happy.
  sentences:
  - এটি একটি অসাধারণ ঘনটা এবং এক অদ্ভুত অনুধাবন।
  - কেন এই ধারণাটা ছড়িয়ে গেল?
  - আমি সুখে থাকাকেই বেছে নিয়েছি।
- source_sentence: And if tempers are still too high, then they send someone off to
    visit some relatives, as a cooling-off period.
  sentences:
  - और यदि तब भी गुस्सा शांत  हो, तो वो किसी को अपने रिश्तेदारों से मिलने भेज देते
    हैं शांत होने के लिये।
  - और वे तुम्हे गलत समय पर बाधित करते रहते है जब तुम अच मैं कुच करने कि कोशिश कर
    रहे होते हो जिसके लिये वे तुम्हे भुगतान करते है वे तुमको बधित करते हैं।
  - 'इस प्रयोग का आखिरी सवाल था: कैसे आप अपने जीवन से दूसरों पर सकारात्मक प्रभाव डालेंगे?'
- source_sentence: I see, I see one way in the back.
  sentences:
  - ಸ್ಟಾಂಡರ್ಡ್ ಚಾರ್ಟರ್ಡ್ 140 ಮಿಲಿಯನ್ ತಂದಿದೆ.
  - ನಗರಗಳಲ್ಲಂತೂ ಶೇಕಡಾ ೮೦ರಷ್ಟು ಮಕ್ಕಳು ಕಾಲೇಜಿಗೆ ಹೋಗುತ್ತಾರೆ.
  - ಇನ್ನು ಯಾರಾದರೂ? ನನಗೆ ಕಾಣಿಸುತ್ತಿದೆ, ಅಲ್ಲಿ..ಹಿಂದೆ.. ಒಂದು ಕೈ ಕಾಣಿಸುತ್ತಿದೆ.
- source_sentence: Whenever it rains, magically, mushrooms appear overnight.
  sentences:
  -  ವಿಷಯವನ್ನು ಅವರು ಮುಚ್ಚಿಟ್ಟರು, ಆದರೆ ಇತರರಿಗೆ ಬೇಗನೇ ತಿಳಿಯಿತು.
  - ಮಳೆಯಾದಾಗೆಲ್ಲ, ಮನಮೋಹಕವಾಗಿ, ಅಣಬೆಗಳು ಒಂದು ರಾತ್ರಿಯ  ವೇಳೆಯಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತವೆ.
  - 'ಪ್ರೇಕ್ಷಕ: 1947 ಎಬಿ: 1947, ಯಾವ ತಿಂಗಳು?'
datasets:
- aloobun/indic-parallel-sentences-talks
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
- src2trg_accuracy
- trg2src_accuracy
- mean_accuracy
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on aloobun/d-mxbai-L8-embed
  results:
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en mr
      type: en-mr
    metrics:
    - type: negative_mse
      value: -14.405468106269836
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en mr
      type: en-mr
    metrics:
    - type: src2trg_accuracy
      value: 0.324
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.174
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.249
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en mr test
      type: sts17-en-mr-test
    metrics:
    - type: pearson_cosine
      value: 0.21811289256702704
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.22533360893418355
      name: Spearman Cosine
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en hi
      type: en-hi
    metrics:
    - type: negative_mse
      value: -14.047445356845856
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en hi
      type: en-hi
    metrics:
    - type: src2trg_accuracy
      value: 0.465
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.244
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.35450000000000004
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en hi test
      type: sts17-en-hi-test
    metrics:
    - type: pearson_cosine
      value: 0.08483694965794362
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.13404452326754046
      name: Spearman Cosine
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en bn
      type: en-bn
    metrics:
    - type: negative_mse
      value: -15.71638137102127
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en bn
      type: en-bn
    metrics:
    - type: src2trg_accuracy
      value: 0.242
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.081
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.1615
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en bn test
      type: sts17-en-bn-test
    metrics:
    - type: pearson_cosine
      value: 0.14785129719314127
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.1830075106480045
      name: Spearman Cosine
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en gu
      type: en-gu
    metrics:
    - type: negative_mse
      value: -16.396714746952057
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en gu
      type: en-gu
    metrics:
    - type: src2trg_accuracy
      value: 0.04
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.017
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.0285
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en gu test
      type: sts17-en-gu-test
    metrics:
    - type: pearson_cosine
      value: 0.08746107622701571
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.11731440991672663
      name: Spearman Cosine
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en ta
      type: en-ta
    metrics:
    - type: negative_mse
      value: -16.221003234386444
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en ta
      type: en-ta
    metrics:
    - type: src2trg_accuracy
      value: 0.102
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.04
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.071
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en ta test
      type: sts17-en-ta-test
    metrics:
    - type: pearson_cosine
      value: -0.02863897450386144
      name: Pearson Cosine
    - type: spearman_cosine
      value: -0.039475796340022885
      name: Spearman Cosine
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en kn
      type: en-kn
    metrics:
    - type: negative_mse
      value: -16.703946888446808
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en kn
      type: en-kn
    metrics:
    - type: src2trg_accuracy
      value: 0.117
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.068
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.0925
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en kn test
      type: sts17-en-kn-test
    metrics:
    - type: pearson_cosine
      value: 0.04635550247380243
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.020029816999255046
      name: Spearman Cosine
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en te
      type: en-te
    metrics:
    - type: negative_mse
      value: -17.04743355512619
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en te
      type: en-te
    metrics:
    - type: src2trg_accuracy
      value: 0.075
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.025
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.05
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en te test
      type: sts17-en-te-test
    metrics:
    - type: pearson_cosine
      value: 0.12394140653755585
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.19417699598729235
      name: Spearman Cosine
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en ml
      type: en-ml
    metrics:
    - type: negative_mse
      value: -17.274518311023712
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en ml
      type: en-ml
    metrics:
    - type: src2trg_accuracy
      value: 0.054
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.024
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.039
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en ml test
      type: sts17-en-ml-test
    metrics:
    - type: pearson_cosine
      value: 0.24086569602868083
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.2717089217002832
      name: Spearman Cosine
---

# SentenceTransformer based on aloobun/d-mxbai-L8-embed

This is a [sentence-transformers](https://www.SBERT.net) model finetuned (to extend a monolingual model to several indic languages) from [aloobun/d-mxbai-L8-embed](https://huggingface.co./aloobun/d-mxbai-L8-embed) on the [en-mr](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks), [en-hi](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks), [en-bn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks), [en-gu](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks), [en-ta](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks), [en-kn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks), [en-te](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) and [en-ml](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

WIP

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aloobun/d-mxbai-L8-embed](https://huggingface.co./aloobun/d-mxbai-L8-embed) <!-- at revision 0ce426e9751ae51079e5642fbd1c2423f4b84786 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [en-mr](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
    - [en-hi](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
    - [en-bn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
    - [en-gu](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
    - [en-ta](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
    - [en-kn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
    - [en-te](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
    - [en-ml](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks)
- **Languages:** bn, gu, hi, kn, ml, mr, ta, te
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Whenever it rains, magically, mushrooms appear overnight.',
    'ಮಳೆಯಾದಾಗೆಲ್ಲ, ಮನಮೋಹಕವಾಗಿ, ಅಣಬೆಗಳು ಒಂದು ರಾತ್ರಿಯ  ವೇಳೆಯಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತವೆ.',
    'ಈ ವಿಷಯವನ್ನು ಅವರು ಮುಚ್ಚಿಟ್ಟರು, ಆದರೆ ಇತರರಿಗೆ ಬೇಗನೇ ತಿಳಿಯಿತು.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Knowledge Distillation

* Datasets: `en-mr`, `en-hi`, `en-bn`, `en-gu`, `en-ta`, `en-kn`, `en-te` and `en-ml`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | en-mr        | en-hi        | en-bn        | en-gu        | en-ta       | en-kn        | en-te        | en-ml        |
|:-----------------|:-------------|:-------------|:-------------|:-------------|:------------|:-------------|:-------------|:-------------|
| **negative_mse** | **-14.4055** | **-14.0474** | **-15.7164** | **-16.3967** | **-16.221** | **-16.7039** | **-17.0474** | **-17.2745** |

#### Translation

* Datasets: `en-mr`, `en-hi`, `en-bn`, `en-gu`, `en-ta`, `en-kn`, `en-te` and `en-ml`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)

| Metric            | en-mr     | en-hi      | en-bn      | en-gu      | en-ta     | en-kn      | en-te    | en-ml     |
|:------------------|:----------|:-----------|:-----------|:-----------|:----------|:-----------|:---------|:----------|
| src2trg_accuracy  | 0.324     | 0.465      | 0.242      | 0.04       | 0.102     | 0.117      | 0.075    | 0.054     |
| trg2src_accuracy  | 0.174     | 0.244      | 0.081      | 0.017      | 0.04      | 0.068      | 0.025    | 0.024     |
| **mean_accuracy** | **0.249** | **0.3545** | **0.1615** | **0.0285** | **0.071** | **0.0925** | **0.05** | **0.039** |

#### Semantic Similarity

* Datasets: `sts17-en-mr-test`, `sts17-en-hi-test`, `sts17-en-bn-test`, `sts17-en-gu-test`, `sts17-en-ta-test`, `sts17-en-kn-test`, `sts17-en-te-test` and `sts17-en-ml-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | sts17-en-mr-test | sts17-en-hi-test | sts17-en-bn-test | sts17-en-gu-test | sts17-en-ta-test | sts17-en-kn-test | sts17-en-te-test | sts17-en-ml-test |
|:--------------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|
| pearson_cosine      | 0.2181           | 0.0848           | 0.1479           | 0.0875           | -0.0286          | 0.0464           | 0.1239           | 0.2409           |
| **spearman_cosine** | **0.2253**       | **0.134**        | **0.183**        | **0.1173**       | **-0.0395**      | **0.02**         | **0.1942**       | **0.2717**       |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### en-mr

* Dataset: [en-mr](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 21,756 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                           | non_english                                                                        | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | string                                                                             | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 19.45 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 47.25 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                                           | non_english                                                                                                                         | label                                                                                                                        |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
  | <code>(Laughter) But in any case, that was more than 100 years ago.</code>                                                                                                        | <code>(हशा) पण काही झालेतरी ते होते १०० वर्षांपूर्वीचे.</code>                                                                      | <code>[-0.07917306572198868, 0.40863776206970215, 0.39547035098075867, 0.5217214822769165, -0.49311134219169617, ...]</code> |
  | <code>You'd think we might have grown up since then.</code>                                                                                                                       | <code>तेव्हापासून आपण थोडे सुधारलो आहोत असे आपल्याला वाटते.</code>                                                                  | <code>[0.4867176115512848, -0.18171744048595428, 0.2339124083518982, 0.6620380878448486, 0.38678815960884094, ...]</code>    |
  | <code>Now, a friend, an intelligent lapsed Jew, who, incidentally, observes the Sabbath for reasons of cultural solidarity, describes himself as a "tooth-fairy agnostic."</code> | <code>आता एक मित्र, एक बुद्धिमान माजी-ज्यू, जो आपल्या संस्कृतीशी एकजूट दाखवण्यासाठी सबाथ पाळतो, स्वतःला दंतपरी अज्ञेय समजतो,</code> | <code>[0.5010754466056824, -0.5600723028182983, 0.10560179501771927, -0.12681618332862854, -0.47324138879776, ...]</code>    |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-hi

* Dataset: [en-hi](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 46,116 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 22.17 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 49.58 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                         | non_english                                                   | label                                                                                                                       |
  |:----------------------------------------------------------------|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>I've been living with HIV for the past four years.</code> | <code>मैं पिछले चार साल से  एच आइ वी के साथ रह रही हूँ</code> | <code>[-0.004218218382447958, -0.9862065315246582, -1.1370266675949097, 1.2322533130645752, 0.4485853314399719, ...]</code> |
  | <code>My husband left me a year ago.</code>                     | <code>मेरे पति ने एक साल पहले मुझको छोड़ दिया।</code>          | <code>[0.5797509551048279, -0.816991925239563, -0.28531885147094727, 0.5789890885353088, -0.9830609560012817, ...]</code>   |
  | <code>I have two kids under the age of five.</code>             | <code>मेरे दो बच्चे हैं जो पाँच साल के भी नहीं हैं</code>     | <code>[-0.45990556478500366, 0.5632603168487549, -0.11529318988323212, 0.23170329630374908, -0.177066370844841, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-bn

* Dataset: [en-bn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 9,401 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                           | non_english                                                                        | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | string                                                                             | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 22.89 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 64.74 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                         | non_english                                                                                                       | label                                                                                                                      |
  |:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
  | <code>They're just practicing.</code>                                                           | <code>তারা শুধুই অনুশীলন করছে।</code>                                                                             | <code>[0.03945370391011238, 0.9245128631591797, -0.12790781259536743, 0.5141751766204834, -0.6310628056526184, ...]</code> |
  | <code>One day they'll get here.</code>                                                          | <code>একদিন হয়তো তারা এখানে আসতে পারবে।</code>                                                                   | <code>[-0.1937061846256256, 0.3374898135662079, -0.1676691621541977, 0.44971567392349243, 0.45998144149780273, ...]</code> |
  | <code>Now when I got out, I was diagnosed and I was given medications by a psychiatrist.</code> | <code>তো, আমি যখন সেখান থেকে বের হলাম, তখন আমার রোগ নির্নয় করা হলো আর আমাকে ঔষুধপত্র দিলেন মনোরোগ চিকিৎসক</code> | <code>[0.35454168915748596, -0.8726581335067749, -0.3993096947669983, 0.7934805750846863, -0.9255509376525879, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-gu

* Dataset: [en-gu](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 14,805 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                       | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                            | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 22.92 tokens</li><li>max: 109 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.83 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                                  | non_english                                                                                                                                             | label                                                                                                                       |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>It's doing that based on the content inside the images.</code>                                                                                                     | <code>તે છબીઓની અંદર સામગ્રી પર આધારિત છે.</code>                                                                                                       | <code>[-0.10993346571922302, -0.16450753808021545, 0.46822917461395264, -0.2844494879245758, 0.869172990322113, ...]</code> |
  | <code>And that gets really exciting when you think about the richness of the semantic information a lot of images have.</code>                                           | <code>અને જ્યારે તમે સમૃદ્ધિ વિશે વિચારો છો ત્યારે તે ખરેખર આકર્ષક બને છે સિમેન્ટીક માહિતીની ઘણી બધી છબીઓ છે.</code>                                    | <code>[0.09240571409463882, -0.15316684544086456, 0.3019101619720459, -0.13211244344711304, 0.494329571723938, ...]</code>  |
  | <code>Like when you do a web search for images, you type in phrases, and the text on the web page is carrying a lot of information about what that picture is of.</code> | <code>જેમ તમે છબીઓ માટે વેબ શોધ કરો છો ત્યારે, તમે શબ્દસમૂહો લખો છો, અને વેબ પૃષ્ઠ પરનો ટેક્સ્ટ ઘણી બધી માહિતી લઈ રહી છે તે ચિત્ર શું છે તે વિશે</code> | <code>[-0.17813900113105774, -0.5480513572692871, 0.2136719971895218, 0.1629626601934433, 0.7170971632003784, ...]</code>   |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-ta

* Dataset: [en-ta](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 10,196 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                           | non_english                                                                       | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | string                                                                            | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 21.05 tokens</li><li>max: 97 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 34.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                            | non_english                                                                                                   | label                                                                                                                           |
  |:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
  | <code>Or perhaps an ordinary person like you or me?</code>                         | <code>அல்லது சாதாரண மனிதனாக வாழ்ந்த நம்மைப் போன்றவரா?</code>                                                  | <code>[0.03689160570502281, -0.021389128640294075, -0.6246430277824402, -0.20952607691287994, 0.054864056408405304, ...]</code> |
  | <code>We don't know.</code>                                                        | <code>அது நமக்கு தெரியாது.</code>                                                                             | <code>[0.15699629485607147, -0.3969012498855591, -1.0549111366271973, -0.5266945958137512, -0.07592934370040894, ...]</code>    |
  | <code>But the Indus people also left behind artifacts with writing on them.</code> | <code>ஆனால் சிந்து சமவெளி மக்கள் எழுத்துகள் நிறைந்த கலைப்பொருட்களை நமக்கு விட்டுச் சென்றிருக்கின்றனர்.</code> | <code>[-0.5243279337882996, 0.48444223403930664, -0.06693703681230545, -0.01581714116036892, -0.21955616772174835, ...]</code>  |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-kn

* Dataset: [en-kn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,266 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 23.65 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.11 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                       | non_english                                                                                                                               | label                                                                                                                        |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
  | <code>Now, there is other origami in space.</code>                                                                                                            | <code>ಜಪಾನಿನ ಏರೋಸ್ಪೇಸ್ ಏಜೆನ್ಸಿಯು ಕಳುಹಿಸಿರುವ ಸೌರಪಟದ</code>                                                                                 | <code>[-0.08880611509084702, 0.09982031583786011, 0.02458847127854824, 0.476515531539917, -0.021379221230745316, ...]</code> |
  | <code>Japan Aerospace [Exploration] Agency flew a solar sail, and you can see here that the sail expands out, and you can still see the fold lines.</code>    | <code>ಹಾಯಿಯು ಬಿಚ್ಚಿಕೊಳ್ಳುವುದನ್ನು ನೀವಿಲ್ಲಿ ನೋಡಬಹುದು. ಜೊತೆಗೆ ಮಡಿಕೆಯ ಗೆರೆಗಳನ್ನು ಇನ್ನೂ ನೋಡಬಹುದು. ಇಲ್ಲಿ ಬಗೆಹರಿಸಲಾದ ಸಮಸ್ಯೆ ಏನೆಂದರೆ, ಗುರಿ</code> | <code>[-0.34035903215408325, 0.07759397476911545, 0.1922168731689453, -0.2632356286048889, 0.5736825466156006, ...]</code>   |
  | <code>The problem that's being solved here is something that needs to be big and sheet-like at its destination, but needs to be small for the journey.</code> | <code>ತಲುಪಿದಾಗ ಹಾಳೆಯಂತೆ ಹರಡಿಕೊಳ್ಳುವ, ಆದರೆ ಪ್ರಯಾಣದ ಸಮಯದಲ್ಲಿ ಪುಟ್ಟದಾಗಿ ಇರಬೇಕು ಎಂಬ ಸಮಸ್ಯೆ. ಇದು ಬಾಹ್ಯಾಕಾಶಕ್ಕೆ ಹೋಗಬೇಕಾದರಾಗಲೀ ಅಥವಾ</code>       | <code>[0.07517104595899582, -0.14021596312522888, 0.6983174681663513, 0.4898601472377777, -0.5877286195755005, ...]</code>   |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-te

* Dataset: [en-te](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 4,284 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                       | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                            | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 22.17 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 15.56 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                            | non_english                                                                                               | label                                                                                                                           |
  |:-------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
  | <code>Friends, maybe one of you can tell me, what was I doing before becoming a children's rights activist?</code> | <code>మిత్రులారా మీలో ఎవరోఒకరు నాతో చెప్పొచ్చు బాలల హక్కులకోసం పోరాడ్డానికి ముందు నేనేం చేసేవాడినో</code> | <code>[-0.40020492672920227, -0.2989244759082794, -0.6533952951431274, 0.23902057111263275, 0.08480175584554672, ...]</code>    |
  | <code>Does anybody know?</code>                                                                                    | <code>ఎవరికైనా తెలుసా?</code>                                                                             | <code>[0.2367328256368637, -0.04550345987081528, -1.176395297050476, -0.44055190682411194, 0.13103251159191132, ...]</code>     |
  | <code>No.</code>                                                                                                   | <code>తెలీదు</code>                                                                                       | <code>[-0.06585437804460526, -0.36286693811416626, 0.11095129698514938, -0.14597812294960022, -0.03260830044746399, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-ml

* Dataset: [en-ml](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 5,031 training samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                  |
  | details | <ul><li>min: 5 tokens</li><li>mean: 27.75 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.73 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                                                                                                                          | non_english                                                                                                                                                                                                                                                                                                               | label                                                                                                                        |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
  | <code>(Applause) Trevor Neilson: And also, Tan's mother is here today, in the fourth or fifth row.</code>                                                                                                                                                        | <code>(കൈയ്യടി ) ട്രെവോര്‍ നെല്‍സണ്‍: കൂടാതെ താനിന്റെ അമ്മയും ഇന്ന് ഇവിടെ ഉണ്ട് നാലാമത്തെയോ അഞ്ചാമത്തെയോ വരിയില്‍</code>                                                                                                                                                                                                  | <code>[0.4477437138557434, -0.10711782425642014, 0.19890448451042175, 0.2685866355895996, 0.12080372869968414, ...]</code>   |
  | <code>(Applause)</code>                                                                                                                                                                                                                                          | <code>(കൈയ്യടി )</code>                                                                                                                                                                                                                                                                                                   | <code>[0.07853835821151733, 0.18781603872776031, -0.09047681838274002, 0.25601497292518616, -0.5206068754196167, ...]</code> |
  | <code>So a couple of years ago I started a program to try to get the rockstar tech and design people to take a year off and work in the one environment that represents pretty much everything they're supposed to hate; we have them work in government.</code> | <code>രണ്ടു കൊല്ലങ്ങൾക്കു മുൻപ് ഞാൻ ഒരു സംരഭത്തിനു തുടക്കമിട്ടു ടെക്നിക്കൽ ഡിസൈൻ മേഖലകളിലെ വലിയ താരങ്ങളെ അവരുടെ ഒരു വർഷത്തെ ജോലികളിൽ നിന്നൊക്കെ അടർത്തിയെടുത്ത് മറ്റൊരു മേഖലയിൽ ജോലി ചെയ്യാൻ ക്ഷണിക്കാൻ അതും അവർ ഏറ്റവും കൂടുതൽ വെറുത്തേക്കാവുന്ന ഒരു മേഖലയിൽ: ഞങ്ങൾ അവരെ ഗവൺ മെന്റിനു വേണ്ടി പണിയെടുപ്പിക്കുന്നു.</code> | <code>[0.10994623601436615, -0.09076910465955734, -0.3843494653701782, 0.33856505155563354, 0.3447953462600708, ...]</code>  |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Evaluation Datasets

#### en-mr

* Dataset: [en-mr](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                           | non_english                                                                        | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | string                                                                             | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 22.58 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 53.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                  | non_english                                                               | label                                                                                                                          |
  |:-------------------------------------------------------------------------|:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
  | <code>Now I'm going to give you a story.</code>                          | <code>मी आज तुम्हाला एक कथा सांगणार आहे.</code>                           | <code>[0.19280874729156494, -0.07861180603504181, -0.40782108902931213, 0.3979630172252655, 0.08477412909269333, ...]</code>   |
  | <code>It's an Indian story about an Indian woman and her journey.</code> | <code>एक भारतीय महिला आणि तिच्या वाटचालीची हि एक भारतीय कहाणी आहे.</code> | <code>[-0.5461456179618835, -0.08608868718147278, -1.2833353281021118, -0.04911373183131218, -0.23803967237472534, ...]</code> |
  | <code>Let me begin with my parents.</code>                               | <code>माझ्या पालकांपासून मी सुरु करते.</code>                             | <code>[-0.6556792855262756, -0.7583472728729248, 0.04619251936674118, -0.42713433504104614, -0.18057923018932343, ...]</code>  |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-hi

* Dataset: [en-hi](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                  |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.82 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 51.35 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                    | non_english                                                                                                                                                               | label                                                                                                                       |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>Thank you so much, Chris.</code>                                                                                                                     | <code>बहुत बहुत धन्यवाद,क्रिस.</code>                                                                                                                                     | <code>[0.6755521297454834, 0.03665495663881302, -0.060318127274513245, 0.7523263692855835, -0.6887623071670532, ...]</code> |
  | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code>                                     | <code>और यह सच में एक बड़ा सम्मान है कि मुझे इस मंच पर दोबारा आने का मौका मिला. मैं बहुत आभारी हूँ</code>                                                                 | <code>[-0.16181467473506927, -0.18791291117668152, -0.5519911050796509, 0.9049180150032043, -0.747071385383606, ...]</code> |
  | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>मैं इस सम्मलेन से बहुत आश्चर्यचकित हो गया हूँ, और मैं आप सबको धन्यवाद कहना चाहता हूँ उन सभी अच्छी टिप्पणियों के लिए, जो आपने मेरी पिछली रात के भाषण पर करीं.</code> | <code>[0.28718116879463196, -0.5640321373939514, -0.14048989117145538, 0.6461797952651978, -0.7105054259300232, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-bn

* Dataset: [en-bn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                           | non_english                                                                        | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | string                                                                             | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 23.61 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 67.98 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                              | non_english                                                                                                        | label                                                                                                                       |
  |:-----------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>The first thing I want to do is say thank you to all of you.</code>                            | <code>প্রথমেই আমি আপনাদের সবাইকে ধন্যবাদ জানাতে চাই।</code>                                                        | <code>[-0.00464015593752265, -0.2528093159198761, -0.2521325945854187, 0.8438198566436768, -0.5279574990272522, ...]</code> |
  | <code>The second thing I want to do is introduce my co-author and dear friend and co-teacher.</code> | <code>দ্বিতীয় যে কাজটা করতে চাই, তা হল- পরিচয় করিয়ে দিতে চাই আমার সহ-লেখক, প্রিয় বন্ধু ও সহ-শিক্ষকের সঙ্গে।</code> | <code>[0.4810849130153656, -0.14021430909633636, 0.19718660414218903, -0.5403660535812378, 0.06668329983949661, ...]</code> |
  | <code>Ken and I have been working together for almost 40 years.</code>                               | <code>কেইন আর আমি একসঙ্গে কাজ করছি প্রায় ৪০ বছর ধরে</code>                                                         | <code>[0.21682043373584747, 0.1364896148443222, -0.4569880962371826, 1.075974464416504, 0.17770573496818542, ...]</code>    |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-gu

* Dataset: [en-gu](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                           | non_english                                                                      | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | string                                                                           | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 21.6 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 19.2 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                    | non_english                                                                                                                                    | label                                                                                                                       |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>Thank you so much, Chris.</code>                                                                                                                     | <code>ખુબ ખુબ ધન્યવાદ ક્રીસ.</code>                                                                                                            | <code>[0.6755521297454834, 0.03665495663881302, -0.060318127274513245, 0.7523263692855835, -0.6887623071670532, ...]</code> |
  | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code>                                     | <code>અને એ તો ખરેખર મારું અહોભાગ્ય છે. કે મને અહી મંચ પર બીજી વખત આવવાની તક મળી. હું ખુબ જ કૃતજ્ઞ છું .</code>                                | <code>[-0.16181467473506927, -0.18791291117668152, -0.5519911050796509, 0.9049180150032043, -0.747071385383606, ...]</code> |
  | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>હું આ સંમેલન થી ઘણો ખુશ થયો છે, અને તમને બધાને ખુબ જ આભારું છું જે મારે ગયી વખતે કહેવાનું હતું એ બાબતે સારી ટીપ્પણીઓ (કરવા) માટે.</code> | <code>[0.28718116879463196, -0.5640321373939514, -0.14048989117145538, 0.6461797952651978, -0.7105054259300232, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-ta

* Dataset: [en-ta](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                       | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                            | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 21.04 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 33.6 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                  | non_english                                                      | label                                                                                                                          |
  |:-------------------------------------------------------------------------|:-----------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
  | <code>Now I'm going to give you a story.</code>                          | <code>தற்போது நான் உங்களுக்கு ஒரு செய்தி சொல்லப்போகிறேன்.</code> | <code>[0.19280874729156494, -0.07861180603504181, -0.40782108902931213, 0.3979630172252655, 0.08477412909269333, ...]</code>   |
  | <code>It's an Indian story about an Indian woman and her journey.</code> | <code>இது ஒரு இந்திய பெண்ணின் பயணத்தைப் பற்றிய செய்தி</code>     | <code>[-0.5461456179618835, -0.08608868718147278, -1.2833353281021118, -0.04911373183131218, -0.23803967237472534, ...]</code> |
  | <code>Let me begin with my parents.</code>                               | <code>எனது பெற்றோர்களிலிருந்து தொடங்குகின்றேன்.</code>           | <code>[-0.6556792855262756, -0.7583472728729248, 0.04619251936674118, -0.42713433504104614, -0.18057923018932343, ...]</code>  |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-kn

* Dataset: [en-kn](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                        | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                             | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 22.04 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.03 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                                          | non_english                                                                                                                                                                                           | label                                                                                                                           |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
  | <code>The night before I was heading for Scotland, I was invited to host the final of "China's Got Talent" show in Shanghai with the 80,000 live audience in the stadium.</code> | <code>ನಾನು ಸ್ಕಾಟ್ ಲ್ಯಾಂಡ್ ಗೆ ಬಾರೋ ಹಿಂದಿನ ರಾತ್ರಿ ಶಾಂಗಯ್ ನಲ್ಲಿ ನಡೆದ "ಚೈನಾ ಹ್ಯಾಸ್ ಗಾಟ್ ದ ಟ್ಯಾಲೆಂಟ್" ಕಾರ್ಯಕ್ರಮದ ಫೈನಲ್ ಎಪಿಸೋಡ್ ಗೆ ನಿರೂಪಕಿಯಾಗಿ ಹೋಗಬೇಕಾಗಿತ್ತು ಸುಮಾರು ೮೦೦೦೦ ಜನ ಸೇರಿದ್ದ ಆ ಸ್ಟೇಡಿಯಂನಲ್ಲಿ</code> | <code>[-0.7951263189315796, -0.7824558615684509, -0.35716816782951355, -0.32674771547317505, -0.11001778393983841, ...]</code>  |
  | <code>Guess who was the performing guest?</code>                                                                                                                                 | <code>ಯಾರು ಪರ್ಫಾರ್ಮ್ ಮಾಡ್ತಾಯಿದ್ರು ಗೊತ್ತಾ ..?</code>                                                                                                                                                   | <code>[0.35022979974746704, -0.13758550584316254, -0.30045709013938904, -0.26804691553115845, -0.45069000124931335, ...]</code> |
  | <code>Susan Boyle.</code>                                                                                                                                                        | <code>ಸುಸನ್ ಬಾಯ್ಲೇ</code>                                                                                                                                                                             | <code>[0.08617134392261505, -0.4860222339630127, -0.18299497663974762, 0.2238812893629074, -0.2626381516456604, ...]</code>     |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-te

* Dataset: [en-te](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                            | non_english                                                                       | label                                 |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                             | string                                                                            | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 22.29 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.79 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                                                                                        | non_english                                                                                                                                                                                                                                        | label                                                                                                                           |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
  | <code>A few years ago, I felt like I was stuck in a rut, so I decided to follow in the footsteps of the great American philosopher, Morgan Spurlock, and try something new for 30 days.</code> | <code>కొన్ని సంవత్సరాల ముందు, నేను బాగా ఆచరానములో ఉన్న ఆచారాన్ని పాతిస్తునాట్లు భావన నాలో కలిగింది. అందుకే నేను గొప్ప అమెరికన్ తత్వవేత్తఅయిన మోర్గన్ స్పుర్లాక్ గారి దారిని పాటించాలనుకున్నాను. అదే 30 రోజులలో కొత్త వాటి కోసం ప్రయత్నించటం</code> | <code>[-0.08676779270172119, -0.40070414543151855, -0.45080363750457764, -0.14886732399463654, -1.1394624710083008, ...]</code> |
  | <code>The idea is actually pretty simple.</code>                                                                                                                                               | <code>ఈ ఆలోచన చాలా సులభమైనది.</code>                                                                                                                                                                                                               | <code>[-0.3568742871284485, 0.4474738538265228, 0.05005272850394249, -0.5078891515731812, -0.43413764238357544, ...]</code>     |
  | <code>Think about something you've always wanted to add to your life and try it for the next 30 days.</code>                                                                                   | <code>మీ జీవితములో మీరు చేయాలి అనుకునే పనిని ఆలోచించండి. తరువాతా ఆ పనిని తదుపరి 30 రోజులలో ప్రయత్నించండి.</code>                                                                                                                                   | <code>[-0.3424505889415741, 0.566207230091095, -0.5596306324005127, -0.12378782778978348, -0.7162606716156006, ...]</code>      |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### en-ml

* Dataset: [en-ml](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks) at [604450b](https://huggingface.co./datasets/aloobun/indic-parallel-sentences-talks/tree/604450baf780fd49257a8541c331e7bb5a90171d)
* Size: 1,000 evaluation samples
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | english                                                                           | non_english                                                                       | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | string                                                                            | list                                  |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.54 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.84 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | english                                                                                                                             | non_english                                                                                                                                                            | label                                                                                                                         |
  |:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
  | <code>My big idea is a very, very small idea that can unlock billions of big ideas that are at the moment dormant inside us.</code> | <code>എന്‍റെ വലിയ ആശയം വാസ്തവത്തില്‍ ഒരു വളരെ ചെറിയ ആശയമാണ് നമ്മുടെ അകത്തു ഉറങ്ങിക്കിടക്കുന്ന കോടിക്കണക്കിനു മഹത്തായ ആശയങ്ങളെ പുറത്തു കൊണ്ടുവരാന്‍ അതിനു കഴിയും</code> | <code>[-0.5196835398674011, -0.486665815114975, -0.3554009795188904, -0.4337313771247864, -0.2802641689777374, ...]</code>    |
  | <code>And my little idea that will do that is sleep.</code>                                                                         | <code>എന്‍റെ ആ ചെറിയ ആശയമാണ് നിദ്ര</code>                                                                                                                              | <code>[-0.38715794682502747, 0.13692918419837952, -0.05456114560365677, -0.5371901988983154, -0.4038388431072235, ...]</code> |
  | <code>(Laughter) (Applause) This is a room of type A women.</code>                                                                  | <code>(സദസ്സില്‍ ചിരി) (പ്രേക്ഷകരുടെ കൈയ്യടി) ഇത് ഉന്നത ഗണത്തില്‍ പെടുന്ന സ്ത്രീകളുടെ ഒരു മുറിയാണ്</code>                                                              | <code>[0.14095601439476013, 0.5374701619148254, -0.07505392283201218, 0.0036823241971433163, -0.5300045013427734, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | en-mr loss | en-hi loss | en-bn loss | en-gu loss | en-ta loss | en-kn loss | en-te loss | en-ml loss | en-mr_negative_mse | en-mr_mean_accuracy | sts17-en-mr-test_spearman_cosine | en-hi_negative_mse | en-hi_mean_accuracy | sts17-en-hi-test_spearman_cosine | en-bn_negative_mse | en-bn_mean_accuracy | sts17-en-bn-test_spearman_cosine | en-gu_negative_mse | en-gu_mean_accuracy | sts17-en-gu-test_spearman_cosine | en-ta_negative_mse | en-ta_mean_accuracy | sts17-en-ta-test_spearman_cosine | en-kn_negative_mse | en-kn_mean_accuracy | sts17-en-kn-test_spearman_cosine | en-te_negative_mse | en-te_mean_accuracy | sts17-en-te-test_spearman_cosine | en-ml_negative_mse | en-ml_mean_accuracy | sts17-en-ml-test_spearman_cosine |
|:------:|:----:|:-------------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:------------------:|:-------------------:|:--------------------------------:|:------------------:|:-------------------:|:--------------------------------:|:------------------:|:-------------------:|:--------------------------------:|:------------------:|:-------------------:|:--------------------------------:|:------------------:|:-------------------:|:--------------------------------:|:------------------:|:-------------------:|:--------------------------------:|:------------------:|:-------------------:|:--------------------------------:|:------------------:|:-------------------:|:--------------------------------:|
| 0.0566 | 100  | 0.1507        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.1133 | 200  | 0.1189        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.1699 | 300  | 0.116         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.2265 | 400  | 0.1146        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.2831 | 500  | 0.113         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.3398 | 600  | 0.1117        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.3964 | 700  | 0.1113        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.4530 | 800  | 0.1108        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.5096 | 900  | 0.1099        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.5663 | 1000 | 0.109         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.6229 | 1100 | 0.1081        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.6795 | 1200 | 0.1078        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.7361 | 1300 | 0.1074        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.7928 | 1400 | 0.1074        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.8494 | 1500 | 0.1065        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.9060 | 1600 | 0.1062        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 0.9626 | 1700 | 0.1061        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.0193 | 1800 | 0.1054        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.0759 | 1900 | 0.1057        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.1325 | 2000 | 0.1053        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.1891 | 2100 | 0.105         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.2458 | 2200 | 0.1045        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.3024 | 2300 | 0.1037        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.3590 | 2400 | 0.1033        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.4156 | 2500 | 0.1038        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.4723 | 2600 | 0.1036        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.5289 | 2700 | 0.1025        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.5855 | 2800 | 0.1031        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.6421 | 2900 | 0.1021        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.6988 | 3000 | 0.1015        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.7554 | 3100 | 0.1017        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.8120 | 3200 | 0.1021        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.8686 | 3300 | 0.1009        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.9253 | 3400 | 0.1013        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 1.9819 | 3500 | 0.1009        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.0385 | 3600 | 0.1006        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.0951 | 3700 | 0.1001        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.1518 | 3800 | 0.1014        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.2084 | 3900 | 0.0998        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.2650 | 4000 | 0.1           | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.3216 | 4100 | 0.0983        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.3783 | 4200 | 0.0991        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.4349 | 4300 | 0.0996        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.4915 | 4400 | 0.099         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.5481 | 4500 | 0.0986        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.6048 | 4600 | 0.099         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.6614 | 4700 | 0.0985        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.7180 | 4800 | 0.0977        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.7746 | 4900 | 0.0985        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.8313 | 5000 | 0.0979        | 0.0894     | 0.0869     | 0.0962     | 0.0981     | 0.0972     | 0.1006     | 0.1002     | 0.1047     | -14.4055           | 0.249               | 0.2253                           | -14.0474           | 0.3545              | 0.1340                           | -15.7164           | 0.1615              | 0.1830                           | -16.3967           | 0.0285              | 0.1173                           | -16.2210           | 0.071               | -0.0395                          | -16.7039           | 0.0925              | 0.0200                           | -17.0474           | 0.05                | 0.1942                           | -17.2745           | 0.039               | 0.2717                           |
| 2.8879 | 5100 | 0.0979        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 2.9445 | 5200 | 0.0972        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.0011 | 5300 | 0.0976        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.0578 | 5400 | 0.0974        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.1144 | 5500 | 0.0975        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.1710 | 5600 | 0.0968        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.2276 | 5700 | 0.0972        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.2843 | 5800 | 0.0967        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.3409 | 5900 | 0.095         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.3975 | 6000 | 0.0965        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.4541 | 6100 | 0.0975        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.5108 | 6200 | 0.0961        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.5674 | 6300 | 0.0966        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.6240 | 6400 | 0.0958        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.6806 | 6500 | 0.0962        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.7373 | 6600 | 0.0955        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.7939 | 6700 | 0.0962        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.8505 | 6800 | 0.0956        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.9071 | 6900 | 0.0958        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 3.9638 | 7000 | 0.0953        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.0204 | 7100 | 0.0951        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.0770 | 7200 | 0.0959        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.1336 | 7300 | 0.0957        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.1903 | 7400 | 0.0949        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.2469 | 7500 | 0.0954        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.3035 | 7600 | 0.0941        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.3601 | 7700 | 0.0944        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.4168 | 7800 | 0.0953        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.4734 | 7900 | 0.0955        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.5300 | 8000 | 0.0943        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.5866 | 8100 | 0.0962        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.6433 | 8200 | 0.0947        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.6999 | 8300 | 0.0939        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.7565 | 8400 | 0.0947        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.8131 | 8500 | 0.095         | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.8698 | 8600 | 0.0944        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.9264 | 8700 | 0.0947        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |
| 4.9830 | 8800 | 0.0944        | -          | -          | -          | -          | -          | -          | -          | -          | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                | -                  | -                   | -                                |


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->