--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1195425 - loss:MSELoss base_model: mixedbread-ai/mxbai-embed-large-v1 widget: - source_sentence: >- At an outdoor event in an Asian-themed area, a crowd congregates as one person in a yellow Chinese dragon costume confronts the camera. sentences: - Boy dressed in blue holds a toy. - A man is smiling at his wife. - Two young asian men are squatting. - source_sentence: A man with a shopping cart is studying the shelves in a supermarket aisle. sentences: - the animal is running - The children are watching TV at home. - >- Three young boys one is holding a camera and another is holding a green toy all are wearing t-shirt and smiling. - source_sentence: The door is open. sentences: - A girl is using an apple laptop with her headphones in her ears. - >- There are three men in this picture, two are on motorbikes, one of the men has a large piece of furniture on the back of his bike, the other is about to be handed a piece of paper by a man in a white shirt. - >- A large group of people are gathered outside of a brick building lit with spotlights. - source_sentence: >- A small group of children are standing in a classroom and one of them has a foot in a trashcan, which also has a rope leading out of it. sentences: - People are playing music. - Children are swimming at the beach. - Women are celebrating at a bar. - source_sentence: >- A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind. sentences: - Some men with jerseys are in a bar, watching a soccer match. - the guy is dead - >- There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - negative_mse model-index: - name: SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8654028138219636 name: Pearson Cosine - type: spearman_cosine value: 0.8873087539713633 name: Spearman Cosine - task: type: knowledge-distillation name: Knowledge Distillation dataset: name: Unknown type: unknown metrics: - type: negative_mse value: -3.3795181661844254 name: Negative Mse - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.834023412201456 name: Pearson Cosine - type: spearman_cosine value: 0.8723901159121923 name: Spearman Cosine license: apache-2.0 language: - en --- # SentenceTransformer based on Model Distillation In this experiment with knowledge distillation for embedding models, i retained 8 layers from the teacher model. This is an attempt to create a lighter, faster version. - the top left graph shows how well your model's predictions match reality. Spearman correlation = 0.887 - the top right compares the correlation performance of this model vs the reference(mxbai-embed-large-v1) model - both bars around 0.8-0.9 - bottom left shows, this model processes about 45 samples/s and mxbai-embed-large-v1 processes about 30 samples/s. - the bottom right shows a small accuracy drop for this model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/650a93c23449d9a49c356aab/LkqDmk0wMOpmjihgJYw6G.png) ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co./mixedbread-ai/mxbai-embed-large-v1) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.', 'Some men with jerseys are in a bar, watching a soccer match.', 'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-dev` and `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | sts-dev | sts-test | |:--------------------|:-----------|:-----------| | pearson_cosine | 0.8654 | 0.834 | | **spearman_cosine** | **0.8873** | **0.8724** | #### Knowledge Distillation * Evaluated with [MSEEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) | Metric | Value | |:-----------------|:------------| | **negative_mse** | **-3.3795** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,195,425 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | [-0.012967385351657867, 0.3716000020503998, 0.252520889043808, 0.7052643299102783, -0.15118499100208282, ...] | | Children smiling and waving at camera | [0.15414997935295105, 0.6666896939277649, -0.3150098919868469, 1.0102407932281494, 0.4113735556602478, ...] | | A boy is jumping on skateboard in the middle of a red bridge. | [-0.2989530563354492, 0.8571284413337708, -0.48532426357269287, 0.8935043215751648, 0.28524795174598694, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 10,000 evaluation samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| | Two women are embracing while holding to go packages. | [-0.35094621777534485, 0.4337681233882904, 0.22905530035495758, 0.9438946843147278, -1.0199058055877686, ...] | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | [-0.37593328952789307, 0.6690596342086792, -0.14921458065509796, 0.7559019923210144, -0.4093412756919861, ...] | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | [0.21969863772392273, 0.5065202713012695, -0.25664886832237244, 0.2569092810153961, -0.05940837413072586, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0001 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.4.0 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```