File size: 1,598 Bytes
013eea5
e173549
 
 
 
 
 
 
013eea5
 
e173549
 
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
013eea5
e173549
 
 
 
 
 
 
 
 
 
 
013eea5
e173549
013eea5
6a120af
013eea5
6a120af
013eea5
e173549
013eea5
e173549
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: bigscience-bloom-rail-1.0
base_model: alonzogarbanzo/Bloom-1b7-dialogsum-Cont-IT-Step4
tags:
- generated_from_trainer
model-index:
- name: Bloom-1b7-creative-writing-Cont-IT-Step5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bloom-1b7-creative-writing-Cont-IT-Step5

This model is a fine-tuned version of [alonzogarbanzo/Bloom-1b7-dialogsum-Cont-IT-Step4](https://huggingface.co./alonzogarbanzo/Bloom-1b7-dialogsum-Cont-IT-Step4) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

Final results: {'loss': 0.0439, 'grad_norm': 1.5330853462219238, 'learning_rate': 3.1914893617021275e-07, 'epoch': 9.89}

Average results: {'train_runtime': 1120.6953, 'train_samples_per_second': 1.695, 'train_steps_per_second': 0.419, 'train_loss': 0.8163050188663158, 'epoch': 9.89}

### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2