{ "best_metric": null, "best_model_checkpoint": null, "epoch": 1.5403658368862605, "eval_steps": 200, "global_step": 16800, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.02, "eval_bertscore": 0.7401605248451233, "eval_loss": 1.9530484676361084, "eval_rouge1": 0.6562857460474375, "eval_rouge2": 0.3640670727106235, "eval_rougeL": 0.5655212336424695, "eval_rougeLsum": 0.6414840198810386, "eval_runtime": 21.7196, "eval_samples_per_second": 1.381, "eval_steps_per_second": 0.691, "step": 200 }, { "epoch": 0.02, "grad_norm": 0.25105270743370056, "learning_rate": 0.00019771674842969145, "loss": 1.7353, "step": 250 }, { "epoch": 0.04, "eval_bertscore": 0.7432050108909607, "eval_loss": 1.9583823680877686, "eval_rouge1": 0.6554226269617707, "eval_rouge2": 0.36661086995296877, "eval_rougeL": 0.5637448790342183, "eval_rougeLsum": 0.6419796784912521, "eval_runtime": 21.9623, "eval_samples_per_second": 1.366, "eval_steps_per_second": 0.683, "step": 400 }, { "epoch": 0.05, "grad_norm": 0.26550447940826416, "learning_rate": 0.00019542432717436156, "loss": 1.7786, "step": 500 }, { "epoch": 0.06, "eval_bertscore": 0.7469045519828796, "eval_loss": 1.9245686531066895, "eval_rouge1": 0.6662431635890791, "eval_rouge2": 0.3735263724826765, "eval_rougeL": 0.5755071616151013, "eval_rougeLsum": 0.6538383087686117, "eval_runtime": 21.5302, "eval_samples_per_second": 1.393, "eval_steps_per_second": 0.697, "step": 600 }, { "epoch": 0.07, "grad_norm": 0.1538015753030777, "learning_rate": 0.0001931319059190317, "loss": 1.8851, "step": 750 }, { "epoch": 0.07, "eval_bertscore": 0.7442477941513062, "eval_loss": 1.9187489748001099, "eval_rouge1": 0.6606221897489035, "eval_rouge2": 0.368654563659435, "eval_rougeL": 0.5731546210408094, "eval_rougeLsum": 0.6470590823125606, "eval_runtime": 21.9831, "eval_samples_per_second": 1.365, "eval_steps_per_second": 0.682, "step": 800 }, { "epoch": 0.09, "grad_norm": 0.1681252270936966, "learning_rate": 0.0001908394846637018, "loss": 1.8919, "step": 1000 }, { "epoch": 0.09, "eval_bertscore": 0.7458053231239319, "eval_loss": 1.9159075021743774, "eval_rouge1": 0.6621259186456026, "eval_rouge2": 0.372024043683234, "eval_rougeL": 0.5743354509339939, "eval_rougeLsum": 0.6491550893780276, "eval_runtime": 21.7159, "eval_samples_per_second": 1.381, "eval_steps_per_second": 0.691, "step": 1000 }, { "epoch": 0.11, "eval_bertscore": 0.7468854784965515, "eval_loss": 1.9140182733535767, "eval_rouge1": 0.6626581781149132, "eval_rouge2": 0.37318557504782157, "eval_rougeL": 0.5759264203594217, "eval_rougeLsum": 0.6490702446275723, "eval_runtime": 21.6486, "eval_samples_per_second": 1.386, "eval_steps_per_second": 0.693, "step": 1200 }, { "epoch": 0.11, "grad_norm": 0.1552441120147705, "learning_rate": 0.00018854706340837193, "loss": 1.9052, "step": 1250 }, { "epoch": 0.13, "eval_bertscore": 0.7475314736366272, "eval_loss": 1.913794755935669, "eval_rouge1": 0.6648687174353192, "eval_rouge2": 0.3760379232448734, "eval_rougeL": 0.5784915488164926, "eval_rougeLsum": 0.6513864520108938, "eval_runtime": 21.664, "eval_samples_per_second": 1.385, "eval_steps_per_second": 0.692, "step": 1400 }, { "epoch": 0.14, "grad_norm": 0.14638397097587585, "learning_rate": 0.00018625464215304204, "loss": 1.8843, "step": 1500 }, { "epoch": 0.15, "eval_bertscore": 0.747238039970398, "eval_loss": 1.9117029905319214, "eval_rouge1": 0.6638085237198453, "eval_rouge2": 0.3742779818055127, "eval_rougeL": 0.5754209460423059, "eval_rougeLsum": 0.6506476155592722, "eval_runtime": 21.9308, "eval_samples_per_second": 1.368, "eval_steps_per_second": 0.684, "step": 1600 }, { "epoch": 0.16, "grad_norm": 0.15738993883132935, "learning_rate": 0.00018396222089771218, "loss": 1.8964, "step": 1750 }, { "epoch": 0.17, "eval_bertscore": 0.7473016381263733, "eval_loss": 1.9117563962936401, "eval_rouge1": 0.6620053151663765, "eval_rouge2": 0.37406692119411245, "eval_rougeL": 0.5758911607323577, "eval_rougeLsum": 0.6494070575604445, "eval_runtime": 21.6727, "eval_samples_per_second": 1.384, "eval_steps_per_second": 0.692, "step": 1800 }, { "epoch": 0.18, "grad_norm": 0.1588907092809677, "learning_rate": 0.00018166979964238228, "loss": 1.8827, "step": 2000 }, { "epoch": 0.18, "eval_bertscore": 0.7485987544059753, "eval_loss": 1.9126006364822388, "eval_rouge1": 0.6641836156334741, "eval_rouge2": 0.37320215574735827, "eval_rougeL": 0.5783015040447993, "eval_rougeLsum": 0.6522235940423647, "eval_runtime": 21.9759, "eval_samples_per_second": 1.365, "eval_steps_per_second": 0.683, "step": 2000 }, { "epoch": 0.2, "eval_bertscore": 0.7482583522796631, "eval_loss": 1.9075205326080322, "eval_rouge1": 0.6658219484766166, "eval_rouge2": 0.37723364952258465, "eval_rougeL": 0.5769040785174693, "eval_rougeLsum": 0.6511328888044219, "eval_runtime": 21.5892, "eval_samples_per_second": 1.39, "eval_steps_per_second": 0.695, "step": 2200 }, { "epoch": 0.21, "grad_norm": 0.15247465670108795, "learning_rate": 0.00017937737838705242, "loss": 1.8831, "step": 2250 }, { "epoch": 0.22, "eval_bertscore": 0.7460805177688599, "eval_loss": 1.9088668823242188, "eval_rouge1": 0.6627321043292516, "eval_rouge2": 0.3696581195003696, "eval_rougeL": 0.5740988544467178, "eval_rougeLsum": 0.6478729042661874, "eval_runtime": 21.9221, "eval_samples_per_second": 1.368, "eval_steps_per_second": 0.684, "step": 2400 }, { "epoch": 0.23, "grad_norm": 0.1587379276752472, "learning_rate": 0.00017708495713172253, "loss": 1.8829, "step": 2500 }, { "epoch": 0.24, "eval_bertscore": 0.7472203373908997, "eval_loss": 1.906219482421875, "eval_rouge1": 0.6637415370426804, "eval_rouge2": 0.37565276875837994, "eval_rougeL": 0.5773879369079004, "eval_rougeLsum": 0.6488719947518645, "eval_runtime": 21.8112, "eval_samples_per_second": 1.375, "eval_steps_per_second": 0.688, "step": 2600 }, { "epoch": 0.25, "grad_norm": 0.1558646410703659, "learning_rate": 0.00017479253587639266, "loss": 1.8978, "step": 2750 }, { "epoch": 0.26, "eval_bertscore": 0.7466126680374146, "eval_loss": 1.9045982360839844, "eval_rouge1": 0.6616225540296956, "eval_rouge2": 0.37370762164745913, "eval_rougeL": 0.5759418528371097, "eval_rougeLsum": 0.6479977636906877, "eval_runtime": 21.8772, "eval_samples_per_second": 1.371, "eval_steps_per_second": 0.686, "step": 2800 }, { "epoch": 0.28, "grad_norm": 0.14783035218715668, "learning_rate": 0.00017250011462106277, "loss": 1.8978, "step": 3000 }, { "epoch": 0.28, "eval_bertscore": 0.7485571503639221, "eval_loss": 1.9035439491271973, "eval_rouge1": 0.6664050030501707, "eval_rouge2": 0.379492440917784, "eval_rougeL": 0.5806973731221475, "eval_rougeLsum": 0.6524346156604702, "eval_runtime": 21.9217, "eval_samples_per_second": 1.369, "eval_steps_per_second": 0.684, "step": 3000 }, { "epoch": 0.29, "eval_bertscore": 0.7483461499214172, "eval_loss": 1.9022458791732788, "eval_rouge1": 0.6618989733136488, "eval_rouge2": 0.37377379177271053, "eval_rougeL": 0.5780989082173933, "eval_rougeLsum": 0.6490379362631586, "eval_runtime": 21.7847, "eval_samples_per_second": 1.377, "eval_steps_per_second": 0.689, "step": 3200 }, { "epoch": 0.3, "grad_norm": 0.16484151780605316, "learning_rate": 0.0001702076933657329, "loss": 1.8715, "step": 3250 }, { "epoch": 0.31, "eval_bertscore": 0.7490711212158203, "eval_loss": 1.9013088941574097, "eval_rouge1": 0.6638141306545007, "eval_rouge2": 0.37356255553691553, "eval_rougeL": 0.577975450251653, "eval_rougeLsum": 0.6492478632295806, "eval_runtime": 21.8807, "eval_samples_per_second": 1.371, "eval_steps_per_second": 0.686, "step": 3400 }, { "epoch": 0.32, "grad_norm": 0.14130128920078278, "learning_rate": 0.000167915272110403, "loss": 1.8819, "step": 3500 }, { "epoch": 0.33, "eval_bertscore": 0.7475283741950989, "eval_loss": 1.9002223014831543, "eval_rouge1": 0.6628836314413511, "eval_rouge2": 0.37179988805094977, "eval_rougeL": 0.5764222388923268, "eval_rougeLsum": 0.649864229310889, "eval_runtime": 22.124, "eval_samples_per_second": 1.356, "eval_steps_per_second": 0.678, "step": 3600 }, { "epoch": 0.34, "grad_norm": 0.1494186818599701, "learning_rate": 0.00016562285085507315, "loss": 1.8828, "step": 3750 }, { "epoch": 0.35, "eval_bertscore": 0.7486498951911926, "eval_loss": 1.9011151790618896, "eval_rouge1": 0.6669673680023924, "eval_rouge2": 0.3771780440183751, "eval_rougeL": 0.5792518624130161, "eval_rougeLsum": 0.6534484242953056, "eval_runtime": 21.813, "eval_samples_per_second": 1.375, "eval_steps_per_second": 0.688, "step": 3800 }, { "epoch": 0.37, "grad_norm": 0.14803479611873627, "learning_rate": 0.00016333042959974325, "loss": 1.8761, "step": 4000 }, { "epoch": 0.37, "eval_bertscore": 0.7471507787704468, "eval_loss": 1.9001713991165161, "eval_rouge1": 0.6651735220672027, "eval_rouge2": 0.3736698451416937, "eval_rougeL": 0.5779938808281732, "eval_rougeLsum": 0.6509815118131576, "eval_runtime": 21.5004, "eval_samples_per_second": 1.395, "eval_steps_per_second": 0.698, "step": 4000 }, { "epoch": 0.39, "eval_bertscore": 0.7485501766204834, "eval_loss": 1.8993827104568481, "eval_rouge1": 0.6646424082737133, "eval_rouge2": 0.37318485364862475, "eval_rougeL": 0.5773338159759467, "eval_rougeLsum": 0.6507594353103527, "eval_runtime": 21.2963, "eval_samples_per_second": 1.409, "eval_steps_per_second": 0.704, "step": 4200 }, { "epoch": 0.39, "grad_norm": 0.15562959015369415, "learning_rate": 0.0001610380083444134, "loss": 1.8672, "step": 4250 }, { "epoch": 0.4, "eval_bertscore": 0.7469989061355591, "eval_loss": 1.900540828704834, "eval_rouge1": 0.6620664558691891, "eval_rouge2": 0.37299419371215703, "eval_rougeL": 0.5765442194831125, "eval_rougeLsum": 0.6472642385429858, "eval_runtime": 21.9086, "eval_samples_per_second": 1.369, "eval_steps_per_second": 0.685, "step": 4400 }, { "epoch": 0.41, "grad_norm": 0.15420928597450256, "learning_rate": 0.0001587455870890835, "loss": 1.8754, "step": 4500 }, { "epoch": 0.42, "eval_bertscore": 0.7475299835205078, "eval_loss": 1.8988685607910156, "eval_rouge1": 0.6656661780424216, "eval_rouge2": 0.37467258880478527, "eval_rougeL": 0.5770800519970718, "eval_rougeLsum": 0.6522703864288166, "eval_runtime": 22.063, "eval_samples_per_second": 1.36, "eval_steps_per_second": 0.68, "step": 4600 }, { "epoch": 0.44, "grad_norm": 0.15809176862239838, "learning_rate": 0.00015645316583375363, "loss": 1.8848, "step": 4750 }, { "epoch": 0.44, "eval_bertscore": 0.7490234375, "eval_loss": 1.8991097211837769, "eval_rouge1": 0.6651730257289085, "eval_rouge2": 0.3778893043274054, "eval_rougeL": 0.5782673838033503, "eval_rougeLsum": 0.6516865674488727, "eval_runtime": 22.0202, "eval_samples_per_second": 1.362, "eval_steps_per_second": 0.681, "step": 4800 }, { "epoch": 0.46, "grad_norm": 0.17979757487773895, "learning_rate": 0.00015416074457842374, "loss": 1.8851, "step": 5000 }, { "epoch": 0.46, "eval_bertscore": 0.7492111325263977, "eval_loss": 1.897339940071106, "eval_rouge1": 0.665920573890169, "eval_rouge2": 0.37917993898535385, "eval_rougeL": 0.5800236892888617, "eval_rougeLsum": 0.6529131688355863, "eval_runtime": 21.6103, "eval_samples_per_second": 1.388, "eval_steps_per_second": 0.694, "step": 5000 }, { "epoch": 0.48, "eval_bertscore": 0.7491253614425659, "eval_loss": 1.897528052330017, "eval_rouge1": 0.6653452054219615, "eval_rouge2": 0.3759208437918665, "eval_rougeL": 0.5776757077854651, "eval_rougeLsum": 0.6511876484723524, "eval_runtime": 21.3101, "eval_samples_per_second": 1.408, "eval_steps_per_second": 0.704, "step": 5200 }, { "epoch": 0.48, "grad_norm": 0.16869671642780304, "learning_rate": 0.00015186832332309387, "loss": 1.8783, "step": 5250 }, { "epoch": 0.5, "eval_bertscore": 0.7494469881057739, "eval_loss": 1.895969271659851, "eval_rouge1": 0.6660951369469854, "eval_rouge2": 0.3764077134133328, "eval_rougeL": 0.578785826234568, "eval_rougeLsum": 0.6525967284041656, "eval_runtime": 21.7955, "eval_samples_per_second": 1.376, "eval_steps_per_second": 0.688, "step": 5400 }, { "epoch": 0.5, "grad_norm": 0.15996231138706207, "learning_rate": 0.00014957590206776398, "loss": 1.8805, "step": 5500 }, { "epoch": 0.51, "eval_bertscore": 0.7486470341682434, "eval_loss": 1.8955131769180298, "eval_rouge1": 0.6670292173522965, "eval_rouge2": 0.37457018529010144, "eval_rougeL": 0.5775243235432015, "eval_rougeLsum": 0.652574079807632, "eval_runtime": 21.7576, "eval_samples_per_second": 1.379, "eval_steps_per_second": 0.689, "step": 5600 }, { "epoch": 0.53, "grad_norm": 0.17192547023296356, "learning_rate": 0.00014728348081243412, "loss": 1.8884, "step": 5750 }, { "epoch": 0.53, "eval_bertscore": 0.7483081817626953, "eval_loss": 1.895763874053955, "eval_rouge1": 0.6659275328276997, "eval_rouge2": 0.3778666475350364, "eval_rougeL": 0.579425140056643, "eval_rougeLsum": 0.6515870828784887, "eval_runtime": 21.6648, "eval_samples_per_second": 1.385, "eval_steps_per_second": 0.692, "step": 5800 }, { "epoch": 0.55, "grad_norm": 0.15838442742824554, "learning_rate": 0.00014499105955710422, "loss": 1.8913, "step": 6000 }, { "epoch": 0.55, "eval_bertscore": 0.7493732571601868, "eval_loss": 1.8914682865142822, "eval_rouge1": 0.6669695240447069, "eval_rouge2": 0.3769441114214874, "eval_rougeL": 0.5798986667152066, "eval_rougeLsum": 0.6534527583592111, "eval_runtime": 21.4686, "eval_samples_per_second": 1.397, "eval_steps_per_second": 0.699, "step": 6000 }, { "epoch": 0.57, "eval_bertscore": 0.7510559558868408, "eval_loss": 1.8923884630203247, "eval_rouge1": 0.6677938121282943, "eval_rouge2": 0.37854575387307554, "eval_rougeL": 0.5817052753830161, "eval_rougeLsum": 0.6534737907551461, "eval_runtime": 21.593, "eval_samples_per_second": 1.389, "eval_steps_per_second": 0.695, "step": 6200 }, { "epoch": 0.57, "grad_norm": 0.15312573313713074, "learning_rate": 0.00014269863830177433, "loss": 1.8705, "step": 6250 }, { "epoch": 0.59, "eval_bertscore": 0.7479371428489685, "eval_loss": 1.891802430152893, "eval_rouge1": 0.6658674357402252, "eval_rouge2": 0.3757712649269345, "eval_rougeL": 0.5791817270712349, "eval_rougeLsum": 0.6509960265397259, "eval_runtime": 21.8726, "eval_samples_per_second": 1.372, "eval_steps_per_second": 0.686, "step": 6400 }, { "epoch": 0.6, "grad_norm": 0.15844614803791046, "learning_rate": 0.00014040621704644447, "loss": 1.8643, "step": 6500 }, { "epoch": 0.61, "eval_bertscore": 0.7484550476074219, "eval_loss": 1.8903728723526, "eval_rouge1": 0.6683828816523312, "eval_rouge2": 0.37811618722345436, "eval_rougeL": 0.5802581730590705, "eval_rougeLsum": 0.6534402764651661, "eval_runtime": 21.8343, "eval_samples_per_second": 1.374, "eval_steps_per_second": 0.687, "step": 6600 }, { "epoch": 0.62, "grad_norm": 0.1661410629749298, "learning_rate": 0.00013811379579111458, "loss": 1.877, "step": 6750 }, { "epoch": 0.62, "eval_bertscore": 0.747416615486145, "eval_loss": 1.8915189504623413, "eval_rouge1": 0.6644777881148224, "eval_rouge2": 0.3747657029706615, "eval_rougeL": 0.5793454557198501, "eval_rougeLsum": 0.6521716611395593, "eval_runtime": 21.523, "eval_samples_per_second": 1.394, "eval_steps_per_second": 0.697, "step": 6800 }, { "epoch": 0.64, "grad_norm": 0.16483080387115479, "learning_rate": 0.00013582137453578468, "loss": 1.8792, "step": 7000 }, { "epoch": 0.64, "eval_bertscore": 0.7480576634407043, "eval_loss": 1.8913365602493286, "eval_rouge1": 0.6655764268912302, "eval_rouge2": 0.3757671289735428, "eval_rougeL": 0.577951380212153, "eval_rougeLsum": 0.6507587412359694, "eval_runtime": 21.3067, "eval_samples_per_second": 1.408, "eval_steps_per_second": 0.704, "step": 7000 }, { "epoch": 0.66, "eval_bertscore": 0.7505319714546204, "eval_loss": 1.889721155166626, "eval_rouge1": 0.6706532239207523, "eval_rouge2": 0.37986537729431724, "eval_rougeL": 0.5824624008038861, "eval_rougeLsum": 0.6571986550416876, "eval_runtime": 21.8193, "eval_samples_per_second": 1.375, "eval_steps_per_second": 0.687, "step": 7200 }, { "epoch": 0.66, "grad_norm": 0.1685444712638855, "learning_rate": 0.00013352895328045482, "loss": 1.8748, "step": 7250 }, { "epoch": 0.68, "eval_bertscore": 0.7472131252288818, "eval_loss": 1.889514684677124, "eval_rouge1": 0.6647481520892182, "eval_rouge2": 0.3727968089505218, "eval_rougeL": 0.5772333167389081, "eval_rougeLsum": 0.6503920840351167, "eval_runtime": 21.5794, "eval_samples_per_second": 1.39, "eval_steps_per_second": 0.695, "step": 7400 }, { "epoch": 0.69, "grad_norm": 0.16196218132972717, "learning_rate": 0.00013123653202512493, "loss": 1.8958, "step": 7500 }, { "epoch": 0.7, "eval_bertscore": 0.7467525005340576, "eval_loss": 1.8874704837799072, "eval_rouge1": 0.6652789954777591, "eval_rouge2": 0.3747211875622626, "eval_rougeL": 0.5781018250975862, "eval_rougeLsum": 0.6512065884264598, "eval_runtime": 21.6436, "eval_samples_per_second": 1.386, "eval_steps_per_second": 0.693, "step": 7600 }, { "epoch": 0.71, "grad_norm": 0.17379231750965118, "learning_rate": 0.00012894411076979506, "loss": 1.8655, "step": 7750 }, { "epoch": 0.72, "eval_bertscore": 0.7478018403053284, "eval_loss": 1.8879252672195435, "eval_rouge1": 0.6676077444849423, "eval_rouge2": 0.37550824667101645, "eval_rougeL": 0.5792625587400696, "eval_rougeLsum": 0.6537654224373248, "eval_runtime": 21.8026, "eval_samples_per_second": 1.376, "eval_steps_per_second": 0.688, "step": 7800 }, { "epoch": 0.73, "grad_norm": 0.17975503206253052, "learning_rate": 0.00012665168951446517, "loss": 1.8593, "step": 8000 }, { "epoch": 0.73, "eval_bertscore": 0.7490061521530151, "eval_loss": 1.8872514963150024, "eval_rouge1": 0.6677074837057098, "eval_rouge2": 0.37723681410973775, "eval_rougeL": 0.5806554105436175, "eval_rougeLsum": 0.6531691046113964, "eval_runtime": 21.2682, "eval_samples_per_second": 1.411, "eval_steps_per_second": 0.705, "step": 8000 }, { "epoch": 0.75, "eval_bertscore": 0.7476587295532227, "eval_loss": 1.8857940435409546, "eval_rouge1": 0.6675733171919529, "eval_rouge2": 0.37667421034338344, "eval_rougeL": 0.5804128987718613, "eval_rougeLsum": 0.6534287804714597, "eval_runtime": 21.5325, "eval_samples_per_second": 1.393, "eval_steps_per_second": 0.697, "step": 8200 }, { "epoch": 0.76, "grad_norm": 0.1596900373697281, "learning_rate": 0.0001243592682591353, "loss": 1.8627, "step": 8250 }, { "epoch": 0.77, "eval_bertscore": 0.7444086074829102, "eval_loss": 1.8874648809432983, "eval_rouge1": 0.6633779669482168, "eval_rouge2": 0.3710094509675216, "eval_rougeL": 0.5760576627400225, "eval_rougeLsum": 0.6499803336918719, "eval_runtime": 21.4464, "eval_samples_per_second": 1.399, "eval_steps_per_second": 0.699, "step": 8400 }, { "epoch": 0.78, "grad_norm": 0.16890183091163635, "learning_rate": 0.00012206684700380542, "loss": 1.8534, "step": 8500 }, { "epoch": 0.79, "eval_bertscore": 0.7483052611351013, "eval_loss": 1.8880757093429565, "eval_rouge1": 0.6686948143176776, "eval_rouge2": 0.3803796130427515, "eval_rougeL": 0.5802459813261722, "eval_rougeLsum": 0.6536962466082527, "eval_runtime": 21.5416, "eval_samples_per_second": 1.393, "eval_steps_per_second": 0.696, "step": 8600 }, { "epoch": 0.8, "grad_norm": 0.1596900373697281, "learning_rate": 0.00011977442574847555, "loss": 1.882, "step": 8750 }, { "epoch": 0.81, "eval_bertscore": 0.748338520526886, "eval_loss": 1.8871524333953857, "eval_rouge1": 0.6673919143770407, "eval_rouge2": 0.3761761743795482, "eval_rougeL": 0.5797615995019129, "eval_rougeLsum": 0.6526650363891257, "eval_runtime": 21.8432, "eval_samples_per_second": 1.373, "eval_steps_per_second": 0.687, "step": 8800 }, { "epoch": 0.83, "grad_norm": 0.16380883753299713, "learning_rate": 0.00011748200449314565, "loss": 1.8781, "step": 9000 }, { "epoch": 0.83, "eval_bertscore": 0.7473989129066467, "eval_loss": 1.885389804840088, "eval_rouge1": 0.6660513187618474, "eval_rouge2": 0.3728645884799071, "eval_rougeL": 0.5767833607673931, "eval_rougeLsum": 0.6518177265346137, "eval_runtime": 21.5415, "eval_samples_per_second": 1.393, "eval_steps_per_second": 0.696, "step": 9000 }, { "epoch": 0.84, "eval_bertscore": 0.7469697594642639, "eval_loss": 1.8835673332214355, "eval_rouge1": 0.6655382276884847, "eval_rouge2": 0.3743925229327822, "eval_rougeL": 0.5808516524350132, "eval_rougeLsum": 0.6518276923554284, "eval_runtime": 21.7289, "eval_samples_per_second": 1.381, "eval_steps_per_second": 0.69, "step": 9200 }, { "epoch": 0.85, "grad_norm": 0.17286422848701477, "learning_rate": 0.00011518958323781579, "loss": 1.8672, "step": 9250 }, { "epoch": 0.86, "eval_bertscore": 0.7491498589515686, "eval_loss": 1.8845998048782349, "eval_rouge1": 0.6670160490080832, "eval_rouge2": 0.37860182825781935, "eval_rougeL": 0.5797856034485049, "eval_rougeLsum": 0.6531203725936218, "eval_runtime": 21.5625, "eval_samples_per_second": 1.391, "eval_steps_per_second": 0.696, "step": 9400 }, { "epoch": 0.87, "grad_norm": 0.16658568382263184, "learning_rate": 0.0001128971619824859, "loss": 1.8691, "step": 9500 }, { "epoch": 0.88, "eval_bertscore": 0.7493313550949097, "eval_loss": 1.8821747303009033, "eval_rouge1": 0.6659791441681278, "eval_rouge2": 0.3796033834485131, "eval_rougeL": 0.580414529806212, "eval_rougeLsum": 0.6528068238734432, "eval_runtime": 21.8698, "eval_samples_per_second": 1.372, "eval_steps_per_second": 0.686, "step": 9600 }, { "epoch": 0.89, "grad_norm": 0.1733073741197586, "learning_rate": 0.00011060474072715603, "loss": 1.8575, "step": 9750 }, { "epoch": 0.9, "eval_bertscore": 0.7497690320014954, "eval_loss": 1.8809062242507935, "eval_rouge1": 0.6683202809005669, "eval_rouge2": 0.379647408271533, "eval_rougeL": 0.5812799059293663, "eval_rougeLsum": 0.6549076224428805, "eval_runtime": 21.461, "eval_samples_per_second": 1.398, "eval_steps_per_second": 0.699, "step": 9800 }, { "epoch": 0.92, "grad_norm": 0.16828681528568268, "learning_rate": 0.00010831231947182614, "loss": 1.8799, "step": 10000 }, { "epoch": 0.92, "eval_bertscore": 0.7487274408340454, "eval_loss": 1.8800114393234253, "eval_rouge1": 0.6694707226380743, "eval_rouge2": 0.37780830529690856, "eval_rougeL": 0.5789377835641822, "eval_rougeLsum": 0.6540561492044448, "eval_runtime": 21.6228, "eval_samples_per_second": 1.387, "eval_steps_per_second": 0.694, "step": 10000 }, { "epoch": 0.94, "eval_bertscore": 0.7495086789131165, "eval_loss": 1.8811218738555908, "eval_rouge1": 0.6714277794869861, "eval_rouge2": 0.3814957239141348, "eval_rougeL": 0.5817721016839257, "eval_rougeLsum": 0.6566092952916721, "eval_runtime": 23.1282, "eval_samples_per_second": 1.297, "eval_steps_per_second": 0.649, "step": 10200 }, { "epoch": 0.94, "grad_norm": 0.16498848795890808, "learning_rate": 0.00010601989821649627, "loss": 1.8656, "step": 10250 }, { "epoch": 0.95, "eval_bertscore": 0.749505877494812, "eval_loss": 1.8809926509857178, "eval_rouge1": 0.6720420767359538, "eval_rouge2": 0.38239237549289784, "eval_rougeL": 0.5825845512902208, "eval_rougeLsum": 0.6590116525116119, "eval_runtime": 21.5266, "eval_samples_per_second": 1.394, "eval_steps_per_second": 0.697, "step": 10400 }, { "epoch": 0.96, "grad_norm": 0.1661728322505951, "learning_rate": 0.00010372747696116638, "loss": 1.8633, "step": 10500 }, { "epoch": 0.97, "eval_bertscore": 0.7484509944915771, "eval_loss": 1.8795918226242065, "eval_rouge1": 0.66861224256168, "eval_rouge2": 0.3810938571231235, "eval_rougeL": 0.581338929419374, "eval_rougeLsum": 0.6556287448758898, "eval_runtime": 21.6144, "eval_samples_per_second": 1.388, "eval_steps_per_second": 0.694, "step": 10600 }, { "epoch": 0.99, "grad_norm": 0.1695539355278015, "learning_rate": 0.00010143505570583652, "loss": 1.8778, "step": 10750 }, { "epoch": 0.99, "eval_bertscore": 0.747430145740509, "eval_loss": 1.8807307481765747, "eval_rouge1": 0.6659775067192504, "eval_rouge2": 0.37723044840422537, "eval_rougeL": 0.5790798830214317, "eval_rougeLsum": 0.6509981906464294, "eval_runtime": 21.9658, "eval_samples_per_second": 1.366, "eval_steps_per_second": 0.683, "step": 10800 }, { "epoch": 1.01, "grad_norm": 0.18244074285030365, "learning_rate": 9.914263445050664e-05, "loss": 1.8425, "step": 11000 }, { "epoch": 1.01, "eval_bertscore": 0.7464674711227417, "eval_loss": 1.8850181102752686, "eval_rouge1": 0.6682062462715245, "eval_rouge2": 0.377961045305675, "eval_rougeL": 0.5785946041032981, "eval_rougeLsum": 0.6544658695180745, "eval_runtime": 21.4985, "eval_samples_per_second": 1.395, "eval_steps_per_second": 0.698, "step": 11000 }, { "epoch": 1.03, "eval_bertscore": 0.748903214931488, "eval_loss": 1.8819694519042969, "eval_rouge1": 0.6702994540242251, "eval_rouge2": 0.38293287997414793, "eval_rougeL": 0.5814513237567966, "eval_rougeLsum": 0.6559726946972199, "eval_runtime": 21.4139, "eval_samples_per_second": 1.401, "eval_steps_per_second": 0.7, "step": 11200 }, { "epoch": 1.03, "grad_norm": 0.17693208158016205, "learning_rate": 9.685021319517676e-05, "loss": 1.8016, "step": 11250 }, { "epoch": 1.05, "eval_bertscore": 0.7492591738700867, "eval_loss": 1.8827041387557983, "eval_rouge1": 0.6691453593118961, "eval_rouge2": 0.3798853572019327, "eval_rougeL": 0.5809966833392892, "eval_rougeLsum": 0.6558794288097127, "eval_runtime": 21.4988, "eval_samples_per_second": 1.395, "eval_steps_per_second": 0.698, "step": 11400 }, { "epoch": 1.05, "grad_norm": 0.19059012830257416, "learning_rate": 9.455779193984687e-05, "loss": 1.806, "step": 11500 }, { "epoch": 1.06, "eval_bertscore": 0.7471604943275452, "eval_loss": 1.8825455904006958, "eval_rouge1": 0.666961451977486, "eval_rouge2": 0.37886614565714727, "eval_rougeL": 0.5782594534845417, "eval_rougeLsum": 0.6527754475869945, "eval_runtime": 21.6349, "eval_samples_per_second": 1.387, "eval_steps_per_second": 0.693, "step": 11600 }, { "epoch": 1.08, "grad_norm": 0.17817597091197968, "learning_rate": 9.226537068451699e-05, "loss": 1.8087, "step": 11750 }, { "epoch": 1.08, "eval_bertscore": 0.7492148876190186, "eval_loss": 1.8826088905334473, "eval_rouge1": 0.6677645500651761, "eval_rouge2": 0.3804313457558821, "eval_rougeL": 0.5808965378999502, "eval_rougeLsum": 0.654710106622618, "eval_runtime": 21.938, "eval_samples_per_second": 1.367, "eval_steps_per_second": 0.684, "step": 11800 }, { "epoch": 1.1, "grad_norm": 0.1762418895959854, "learning_rate": 8.997294942918711e-05, "loss": 1.806, "step": 12000 }, { "epoch": 1.1, "eval_bertscore": 0.748414933681488, "eval_loss": 1.8811677694320679, "eval_rouge1": 0.6688262090158613, "eval_rouge2": 0.38050452253222067, "eval_rougeL": 0.5800878428874158, "eval_rougeLsum": 0.6541444781570895, "eval_runtime": 21.4244, "eval_samples_per_second": 1.4, "eval_steps_per_second": 0.7, "step": 12000 }, { "epoch": 1.12, "eval_bertscore": 0.7469298243522644, "eval_loss": 1.8827059268951416, "eval_rouge1": 0.667125898932208, "eval_rouge2": 0.37762418321204805, "eval_rougeL": 0.5799787290068156, "eval_rougeLsum": 0.6549075242794395, "eval_runtime": 21.4415, "eval_samples_per_second": 1.399, "eval_steps_per_second": 0.7, "step": 12200 }, { "epoch": 1.12, "grad_norm": 0.1830277293920517, "learning_rate": 8.768969785887855e-05, "loss": 1.805, "step": 12250 }, { "epoch": 1.14, "eval_bertscore": 0.7483015060424805, "eval_loss": 1.881732702255249, "eval_rouge1": 0.6693189289720543, "eval_rouge2": 0.37779647405803307, "eval_rougeL": 0.579417997628969, "eval_rougeLsum": 0.6561505915526004, "eval_runtime": 21.6773, "eval_samples_per_second": 1.384, "eval_steps_per_second": 0.692, "step": 12400 }, { "epoch": 1.15, "grad_norm": 0.20985420048236847, "learning_rate": 8.539727660354867e-05, "loss": 1.8041, "step": 12500 }, { "epoch": 1.16, "eval_bertscore": 0.7499834895133972, "eval_loss": 1.88084077835083, "eval_rouge1": 0.6683080555468759, "eval_rouge2": 0.38032152133281283, "eval_rougeL": 0.5810300348705915, "eval_rougeLsum": 0.6551372270660842, "eval_runtime": 21.938, "eval_samples_per_second": 1.367, "eval_steps_per_second": 0.684, "step": 12600 }, { "epoch": 1.17, "grad_norm": 0.20808811485767365, "learning_rate": 8.310485534821879e-05, "loss": 1.8043, "step": 12750 }, { "epoch": 1.17, "eval_bertscore": 0.7486943602561951, "eval_loss": 1.8817172050476074, "eval_rouge1": 0.6679189638795886, "eval_rouge2": 0.37996382910514515, "eval_rougeL": 0.5796001956914257, "eval_rougeLsum": 0.6541573673696073, "eval_runtime": 21.4517, "eval_samples_per_second": 1.398, "eval_steps_per_second": 0.699, "step": 12800 }, { "epoch": 1.19, "grad_norm": 0.19789676368236542, "learning_rate": 8.081243409288891e-05, "loss": 1.8104, "step": 13000 }, { "epoch": 1.19, "eval_bertscore": 0.7485721111297607, "eval_loss": 1.8802907466888428, "eval_rouge1": 0.668951397016855, "eval_rouge2": 0.38314927037432045, "eval_rougeL": 0.5820242941832685, "eval_rougeLsum": 0.6560871373685493, "eval_runtime": 21.3721, "eval_samples_per_second": 1.404, "eval_steps_per_second": 0.702, "step": 13000 }, { "epoch": 1.21, "eval_bertscore": 0.7488210201263428, "eval_loss": 1.8801518678665161, "eval_rouge1": 0.6681750569025893, "eval_rouge2": 0.3830518663470647, "eval_rougeL": 0.5816389393632242, "eval_rougeLsum": 0.6553053524341508, "eval_runtime": 21.4475, "eval_samples_per_second": 1.399, "eval_steps_per_second": 0.699, "step": 13200 }, { "epoch": 1.21, "grad_norm": 0.19557170569896698, "learning_rate": 7.852918252258036e-05, "loss": 1.8084, "step": 13250 }, { "epoch": 1.23, "eval_bertscore": 0.7466821074485779, "eval_loss": 1.8802975416183472, "eval_rouge1": 0.6692308825749019, "eval_rouge2": 0.3797078912220652, "eval_rougeL": 0.57946258450119, "eval_rougeLsum": 0.6557113213245774, "eval_runtime": 21.6946, "eval_samples_per_second": 1.383, "eval_steps_per_second": 0.691, "step": 13400 }, { "epoch": 1.24, "grad_norm": 0.19721853733062744, "learning_rate": 7.623676126725048e-05, "loss": 1.8012, "step": 13500 }, { "epoch": 1.25, "eval_bertscore": 0.7490766048431396, "eval_loss": 1.879605770111084, "eval_rouge1": 0.6691678070748814, "eval_rouge2": 0.38107433365298127, "eval_rougeL": 0.582338054172935, "eval_rougeLsum": 0.6568902383643855, "eval_runtime": 21.9275, "eval_samples_per_second": 1.368, "eval_steps_per_second": 0.684, "step": 13600 }, { "epoch": 1.26, "grad_norm": 0.19349583983421326, "learning_rate": 7.39443400119206e-05, "loss": 1.8132, "step": 13750 }, { "epoch": 1.27, "eval_bertscore": 0.7497549653053284, "eval_loss": 1.8792203664779663, "eval_rouge1": 0.6703179001918691, "eval_rouge2": 0.38180410252380825, "eval_rougeL": 0.581713046285296, "eval_rougeLsum": 0.6565956659165899, "eval_runtime": 21.7786, "eval_samples_per_second": 1.377, "eval_steps_per_second": 0.689, "step": 13800 }, { "epoch": 1.28, "grad_norm": 0.18819653987884521, "learning_rate": 7.165191875659071e-05, "loss": 1.795, "step": 14000 }, { "epoch": 1.28, "eval_bertscore": 0.7478053569793701, "eval_loss": 1.8781208992004395, "eval_rouge1": 0.6688044844978054, "eval_rouge2": 0.37870372415583714, "eval_rougeL": 0.5806120369243599, "eval_rougeLsum": 0.656028802830182, "eval_runtime": 21.4342, "eval_samples_per_second": 1.4, "eval_steps_per_second": 0.7, "step": 14000 }, { "epoch": 1.3, "eval_bertscore": 0.7475939989089966, "eval_loss": 1.8773213624954224, "eval_rouge1": 0.667032693915823, "eval_rouge2": 0.3795140911798196, "eval_rougeL": 0.5786210918791265, "eval_rougeLsum": 0.6533008623658665, "eval_runtime": 21.5164, "eval_samples_per_second": 1.394, "eval_steps_per_second": 0.697, "step": 14200 }, { "epoch": 1.31, "grad_norm": 0.19872260093688965, "learning_rate": 6.935949750126083e-05, "loss": 1.7976, "step": 14250 }, { "epoch": 1.32, "eval_bertscore": 0.7471275925636292, "eval_loss": 1.8771331310272217, "eval_rouge1": 0.6667652243798369, "eval_rouge2": 0.37965290088537884, "eval_rougeL": 0.579195466508265, "eval_rougeLsum": 0.6541987464482506, "eval_runtime": 21.9596, "eval_samples_per_second": 1.366, "eval_steps_per_second": 0.683, "step": 14400 }, { "epoch": 1.33, "grad_norm": 0.19071438908576965, "learning_rate": 6.706707624593096e-05, "loss": 1.8006, "step": 14500 }, { "epoch": 1.34, "eval_bertscore": 0.7461450099945068, "eval_loss": 1.8777822256088257, "eval_rouge1": 0.6669898597726542, "eval_rouge2": 0.3782385552798212, "eval_rougeL": 0.5796365414022566, "eval_rougeLsum": 0.6528838747342096, "eval_runtime": 21.6208, "eval_samples_per_second": 1.388, "eval_steps_per_second": 0.694, "step": 14600 }, { "epoch": 1.35, "grad_norm": 0.19506482779979706, "learning_rate": 6.477465499060108e-05, "loss": 1.7882, "step": 14750 }, { "epoch": 1.36, "eval_bertscore": 0.747409462928772, "eval_loss": 1.8792914152145386, "eval_rouge1": 0.6669117838841465, "eval_rouge2": 0.3791329545106853, "eval_rougeL": 0.5807099307844747, "eval_rougeLsum": 0.6525940508835434, "eval_runtime": 21.4537, "eval_samples_per_second": 1.398, "eval_steps_per_second": 0.699, "step": 14800 }, { "epoch": 1.38, "grad_norm": 0.1862572729587555, "learning_rate": 6.24822337352712e-05, "loss": 1.8003, "step": 15000 }, { "epoch": 1.38, "eval_bertscore": 0.7468252778053284, "eval_loss": 1.8783739805221558, "eval_rouge1": 0.6659411055423619, "eval_rouge2": 0.37915153029321835, "eval_rougeL": 0.580055071443369, "eval_rougeLsum": 0.6528870644277731, "eval_runtime": 21.6683, "eval_samples_per_second": 1.385, "eval_steps_per_second": 0.692, "step": 15000 }, { "epoch": 1.39, "eval_bertscore": 0.7472605109214783, "eval_loss": 1.8782368898391724, "eval_rouge1": 0.6652680954338304, "eval_rouge2": 0.38147625565924226, "eval_rougeL": 0.5806304267235345, "eval_rougeLsum": 0.6527746910018182, "eval_runtime": 21.5107, "eval_samples_per_second": 1.395, "eval_steps_per_second": 0.697, "step": 15200 }, { "epoch": 1.4, "grad_norm": 0.1981302946805954, "learning_rate": 6.018981247994132e-05, "loss": 1.7888, "step": 15250 }, { "epoch": 1.41, "eval_bertscore": 0.748733401298523, "eval_loss": 1.8776911497116089, "eval_rouge1": 0.6701404636250196, "eval_rouge2": 0.38067643698280296, "eval_rougeL": 0.581655600787955, "eval_rougeLsum": 0.6566958727733392, "eval_runtime": 21.8083, "eval_samples_per_second": 1.376, "eval_steps_per_second": 0.688, "step": 15400 }, { "epoch": 1.42, "grad_norm": 0.20492762327194214, "learning_rate": 5.789739122461144e-05, "loss": 1.8073, "step": 15500 }, { "epoch": 1.43, "eval_bertscore": 0.7469387650489807, "eval_loss": 1.8760439157485962, "eval_rouge1": 0.6673699082883823, "eval_rouge2": 0.37919315875066184, "eval_rougeL": 0.5792508361698389, "eval_rougeLsum": 0.6529526214032775, "eval_runtime": 21.5883, "eval_samples_per_second": 1.39, "eval_steps_per_second": 0.695, "step": 15600 }, { "epoch": 1.44, "grad_norm": 0.20142768323421478, "learning_rate": 5.560496996928156e-05, "loss": 1.8024, "step": 15750 }, { "epoch": 1.45, "eval_bertscore": 0.7471965551376343, "eval_loss": 1.8758026361465454, "eval_rouge1": 0.667590982597795, "eval_rouge2": 0.3771596510278207, "eval_rougeL": 0.5793107728247822, "eval_rougeLsum": 0.6538557764632947, "eval_runtime": 21.5657, "eval_samples_per_second": 1.391, "eval_steps_per_second": 0.696, "step": 15800 }, { "epoch": 1.47, "grad_norm": 0.20283374190330505, "learning_rate": 5.3312548713951684e-05, "loss": 1.7944, "step": 16000 }, { "epoch": 1.47, "eval_bertscore": 0.7459941506385803, "eval_loss": 1.8763011693954468, "eval_rouge1": 0.6658463821002156, "eval_rouge2": 0.3775585742505041, "eval_rougeL": 0.5789043156113151, "eval_rougeLsum": 0.6524780721270875, "eval_runtime": 21.4943, "eval_samples_per_second": 1.396, "eval_steps_per_second": 0.698, "step": 16000 }, { "epoch": 1.49, "eval_bertscore": 0.7484962940216064, "eval_loss": 1.8733354806900024, "eval_rouge1": 0.6674179055624143, "eval_rouge2": 0.38084170844736465, "eval_rougeL": 0.5794959404229213, "eval_rougeLsum": 0.6545746480465326, "eval_runtime": 21.3882, "eval_samples_per_second": 1.403, "eval_steps_per_second": 0.701, "step": 16200 }, { "epoch": 1.49, "grad_norm": 0.20431004464626312, "learning_rate": 5.1029297143643115e-05, "loss": 1.7964, "step": 16250 }, { "epoch": 1.5, "eval_bertscore": 0.7474973797798157, "eval_loss": 1.8748364448547363, "eval_rouge1": 0.6669270423534657, "eval_rouge2": 0.38136143363893454, "eval_rougeL": 0.5807569104492998, "eval_rougeLsum": 0.6532955804605866, "eval_runtime": 21.4125, "eval_samples_per_second": 1.401, "eval_steps_per_second": 0.701, "step": 16400 }, { "epoch": 1.51, "grad_norm": 0.19695881009101868, "learning_rate": 4.8736875888313236e-05, "loss": 1.7937, "step": 16500 }, { "epoch": 1.52, "eval_bertscore": 0.7457157373428345, "eval_loss": 1.873939037322998, "eval_rouge1": 0.6655268933205816, "eval_rouge2": 0.3789838815914194, "eval_rougeL": 0.5792567329501453, "eval_rougeLsum": 0.6515303808621891, "eval_runtime": 21.8316, "eval_samples_per_second": 1.374, "eval_steps_per_second": 0.687, "step": 16600 }, { "epoch": 1.54, "grad_norm": 0.19893115758895874, "learning_rate": 4.644445463298336e-05, "loss": 1.7968, "step": 16750 }, { "epoch": 1.54, "eval_bertscore": 0.7473366260528564, "eval_loss": 1.8731892108917236, "eval_rouge1": 0.6686600471865416, "eval_rouge2": 0.3811582407326848, "eval_rougeL": 0.5819198001344217, "eval_rougeLsum": 0.655875074137708, "eval_runtime": 21.5003, "eval_samples_per_second": 1.395, "eval_steps_per_second": 0.698, "step": 16800 } ], "logging_steps": 250, "max_steps": 21812, "num_input_tokens_seen": 0, "num_train_epochs": 2, "save_steps": 800, "total_flos": 1.1324974713588941e+18, "train_batch_size": 2, "trial_name": null, "trial_params": null }