allstax's picture
Upload folder using huggingface_hub
2d6f02f verified
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 1.7604180992985834,
"eval_steps": 200,
"global_step": 19200,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"eval_bertscore": 0.7401605248451233,
"eval_loss": 1.9530484676361084,
"eval_rouge1": 0.6562857460474375,
"eval_rouge2": 0.3640670727106235,
"eval_rougeL": 0.5655212336424695,
"eval_rougeLsum": 0.6414840198810386,
"eval_runtime": 21.7196,
"eval_samples_per_second": 1.381,
"eval_steps_per_second": 0.691,
"step": 200
},
{
"epoch": 0.02,
"grad_norm": 0.25105270743370056,
"learning_rate": 0.00019771674842969145,
"loss": 1.7353,
"step": 250
},
{
"epoch": 0.04,
"eval_bertscore": 0.7432050108909607,
"eval_loss": 1.9583823680877686,
"eval_rouge1": 0.6554226269617707,
"eval_rouge2": 0.36661086995296877,
"eval_rougeL": 0.5637448790342183,
"eval_rougeLsum": 0.6419796784912521,
"eval_runtime": 21.9623,
"eval_samples_per_second": 1.366,
"eval_steps_per_second": 0.683,
"step": 400
},
{
"epoch": 0.05,
"grad_norm": 0.26550447940826416,
"learning_rate": 0.00019542432717436156,
"loss": 1.7786,
"step": 500
},
{
"epoch": 0.06,
"eval_bertscore": 0.7469045519828796,
"eval_loss": 1.9245686531066895,
"eval_rouge1": 0.6662431635890791,
"eval_rouge2": 0.3735263724826765,
"eval_rougeL": 0.5755071616151013,
"eval_rougeLsum": 0.6538383087686117,
"eval_runtime": 21.5302,
"eval_samples_per_second": 1.393,
"eval_steps_per_second": 0.697,
"step": 600
},
{
"epoch": 0.07,
"grad_norm": 0.1538015753030777,
"learning_rate": 0.0001931319059190317,
"loss": 1.8851,
"step": 750
},
{
"epoch": 0.07,
"eval_bertscore": 0.7442477941513062,
"eval_loss": 1.9187489748001099,
"eval_rouge1": 0.6606221897489035,
"eval_rouge2": 0.368654563659435,
"eval_rougeL": 0.5731546210408094,
"eval_rougeLsum": 0.6470590823125606,
"eval_runtime": 21.9831,
"eval_samples_per_second": 1.365,
"eval_steps_per_second": 0.682,
"step": 800
},
{
"epoch": 0.09,
"grad_norm": 0.1681252270936966,
"learning_rate": 0.0001908394846637018,
"loss": 1.8919,
"step": 1000
},
{
"epoch": 0.09,
"eval_bertscore": 0.7458053231239319,
"eval_loss": 1.9159075021743774,
"eval_rouge1": 0.6621259186456026,
"eval_rouge2": 0.372024043683234,
"eval_rougeL": 0.5743354509339939,
"eval_rougeLsum": 0.6491550893780276,
"eval_runtime": 21.7159,
"eval_samples_per_second": 1.381,
"eval_steps_per_second": 0.691,
"step": 1000
},
{
"epoch": 0.11,
"eval_bertscore": 0.7468854784965515,
"eval_loss": 1.9140182733535767,
"eval_rouge1": 0.6626581781149132,
"eval_rouge2": 0.37318557504782157,
"eval_rougeL": 0.5759264203594217,
"eval_rougeLsum": 0.6490702446275723,
"eval_runtime": 21.6486,
"eval_samples_per_second": 1.386,
"eval_steps_per_second": 0.693,
"step": 1200
},
{
"epoch": 0.11,
"grad_norm": 0.1552441120147705,
"learning_rate": 0.00018854706340837193,
"loss": 1.9052,
"step": 1250
},
{
"epoch": 0.13,
"eval_bertscore": 0.7475314736366272,
"eval_loss": 1.913794755935669,
"eval_rouge1": 0.6648687174353192,
"eval_rouge2": 0.3760379232448734,
"eval_rougeL": 0.5784915488164926,
"eval_rougeLsum": 0.6513864520108938,
"eval_runtime": 21.664,
"eval_samples_per_second": 1.385,
"eval_steps_per_second": 0.692,
"step": 1400
},
{
"epoch": 0.14,
"grad_norm": 0.14638397097587585,
"learning_rate": 0.00018625464215304204,
"loss": 1.8843,
"step": 1500
},
{
"epoch": 0.15,
"eval_bertscore": 0.747238039970398,
"eval_loss": 1.9117029905319214,
"eval_rouge1": 0.6638085237198453,
"eval_rouge2": 0.3742779818055127,
"eval_rougeL": 0.5754209460423059,
"eval_rougeLsum": 0.6506476155592722,
"eval_runtime": 21.9308,
"eval_samples_per_second": 1.368,
"eval_steps_per_second": 0.684,
"step": 1600
},
{
"epoch": 0.16,
"grad_norm": 0.15738993883132935,
"learning_rate": 0.00018396222089771218,
"loss": 1.8964,
"step": 1750
},
{
"epoch": 0.17,
"eval_bertscore": 0.7473016381263733,
"eval_loss": 1.9117563962936401,
"eval_rouge1": 0.6620053151663765,
"eval_rouge2": 0.37406692119411245,
"eval_rougeL": 0.5758911607323577,
"eval_rougeLsum": 0.6494070575604445,
"eval_runtime": 21.6727,
"eval_samples_per_second": 1.384,
"eval_steps_per_second": 0.692,
"step": 1800
},
{
"epoch": 0.18,
"grad_norm": 0.1588907092809677,
"learning_rate": 0.00018166979964238228,
"loss": 1.8827,
"step": 2000
},
{
"epoch": 0.18,
"eval_bertscore": 0.7485987544059753,
"eval_loss": 1.9126006364822388,
"eval_rouge1": 0.6641836156334741,
"eval_rouge2": 0.37320215574735827,
"eval_rougeL": 0.5783015040447993,
"eval_rougeLsum": 0.6522235940423647,
"eval_runtime": 21.9759,
"eval_samples_per_second": 1.365,
"eval_steps_per_second": 0.683,
"step": 2000
},
{
"epoch": 0.2,
"eval_bertscore": 0.7482583522796631,
"eval_loss": 1.9075205326080322,
"eval_rouge1": 0.6658219484766166,
"eval_rouge2": 0.37723364952258465,
"eval_rougeL": 0.5769040785174693,
"eval_rougeLsum": 0.6511328888044219,
"eval_runtime": 21.5892,
"eval_samples_per_second": 1.39,
"eval_steps_per_second": 0.695,
"step": 2200
},
{
"epoch": 0.21,
"grad_norm": 0.15247465670108795,
"learning_rate": 0.00017937737838705242,
"loss": 1.8831,
"step": 2250
},
{
"epoch": 0.22,
"eval_bertscore": 0.7460805177688599,
"eval_loss": 1.9088668823242188,
"eval_rouge1": 0.6627321043292516,
"eval_rouge2": 0.3696581195003696,
"eval_rougeL": 0.5740988544467178,
"eval_rougeLsum": 0.6478729042661874,
"eval_runtime": 21.9221,
"eval_samples_per_second": 1.368,
"eval_steps_per_second": 0.684,
"step": 2400
},
{
"epoch": 0.23,
"grad_norm": 0.1587379276752472,
"learning_rate": 0.00017708495713172253,
"loss": 1.8829,
"step": 2500
},
{
"epoch": 0.24,
"eval_bertscore": 0.7472203373908997,
"eval_loss": 1.906219482421875,
"eval_rouge1": 0.6637415370426804,
"eval_rouge2": 0.37565276875837994,
"eval_rougeL": 0.5773879369079004,
"eval_rougeLsum": 0.6488719947518645,
"eval_runtime": 21.8112,
"eval_samples_per_second": 1.375,
"eval_steps_per_second": 0.688,
"step": 2600
},
{
"epoch": 0.25,
"grad_norm": 0.1558646410703659,
"learning_rate": 0.00017479253587639266,
"loss": 1.8978,
"step": 2750
},
{
"epoch": 0.26,
"eval_bertscore": 0.7466126680374146,
"eval_loss": 1.9045982360839844,
"eval_rouge1": 0.6616225540296956,
"eval_rouge2": 0.37370762164745913,
"eval_rougeL": 0.5759418528371097,
"eval_rougeLsum": 0.6479977636906877,
"eval_runtime": 21.8772,
"eval_samples_per_second": 1.371,
"eval_steps_per_second": 0.686,
"step": 2800
},
{
"epoch": 0.28,
"grad_norm": 0.14783035218715668,
"learning_rate": 0.00017250011462106277,
"loss": 1.8978,
"step": 3000
},
{
"epoch": 0.28,
"eval_bertscore": 0.7485571503639221,
"eval_loss": 1.9035439491271973,
"eval_rouge1": 0.6664050030501707,
"eval_rouge2": 0.379492440917784,
"eval_rougeL": 0.5806973731221475,
"eval_rougeLsum": 0.6524346156604702,
"eval_runtime": 21.9217,
"eval_samples_per_second": 1.369,
"eval_steps_per_second": 0.684,
"step": 3000
},
{
"epoch": 0.29,
"eval_bertscore": 0.7483461499214172,
"eval_loss": 1.9022458791732788,
"eval_rouge1": 0.6618989733136488,
"eval_rouge2": 0.37377379177271053,
"eval_rougeL": 0.5780989082173933,
"eval_rougeLsum": 0.6490379362631586,
"eval_runtime": 21.7847,
"eval_samples_per_second": 1.377,
"eval_steps_per_second": 0.689,
"step": 3200
},
{
"epoch": 0.3,
"grad_norm": 0.16484151780605316,
"learning_rate": 0.0001702076933657329,
"loss": 1.8715,
"step": 3250
},
{
"epoch": 0.31,
"eval_bertscore": 0.7490711212158203,
"eval_loss": 1.9013088941574097,
"eval_rouge1": 0.6638141306545007,
"eval_rouge2": 0.37356255553691553,
"eval_rougeL": 0.577975450251653,
"eval_rougeLsum": 0.6492478632295806,
"eval_runtime": 21.8807,
"eval_samples_per_second": 1.371,
"eval_steps_per_second": 0.686,
"step": 3400
},
{
"epoch": 0.32,
"grad_norm": 0.14130128920078278,
"learning_rate": 0.000167915272110403,
"loss": 1.8819,
"step": 3500
},
{
"epoch": 0.33,
"eval_bertscore": 0.7475283741950989,
"eval_loss": 1.9002223014831543,
"eval_rouge1": 0.6628836314413511,
"eval_rouge2": 0.37179988805094977,
"eval_rougeL": 0.5764222388923268,
"eval_rougeLsum": 0.649864229310889,
"eval_runtime": 22.124,
"eval_samples_per_second": 1.356,
"eval_steps_per_second": 0.678,
"step": 3600
},
{
"epoch": 0.34,
"grad_norm": 0.1494186818599701,
"learning_rate": 0.00016562285085507315,
"loss": 1.8828,
"step": 3750
},
{
"epoch": 0.35,
"eval_bertscore": 0.7486498951911926,
"eval_loss": 1.9011151790618896,
"eval_rouge1": 0.6669673680023924,
"eval_rouge2": 0.3771780440183751,
"eval_rougeL": 0.5792518624130161,
"eval_rougeLsum": 0.6534484242953056,
"eval_runtime": 21.813,
"eval_samples_per_second": 1.375,
"eval_steps_per_second": 0.688,
"step": 3800
},
{
"epoch": 0.37,
"grad_norm": 0.14803479611873627,
"learning_rate": 0.00016333042959974325,
"loss": 1.8761,
"step": 4000
},
{
"epoch": 0.37,
"eval_bertscore": 0.7471507787704468,
"eval_loss": 1.9001713991165161,
"eval_rouge1": 0.6651735220672027,
"eval_rouge2": 0.3736698451416937,
"eval_rougeL": 0.5779938808281732,
"eval_rougeLsum": 0.6509815118131576,
"eval_runtime": 21.5004,
"eval_samples_per_second": 1.395,
"eval_steps_per_second": 0.698,
"step": 4000
},
{
"epoch": 0.39,
"eval_bertscore": 0.7485501766204834,
"eval_loss": 1.8993827104568481,
"eval_rouge1": 0.6646424082737133,
"eval_rouge2": 0.37318485364862475,
"eval_rougeL": 0.5773338159759467,
"eval_rougeLsum": 0.6507594353103527,
"eval_runtime": 21.2963,
"eval_samples_per_second": 1.409,
"eval_steps_per_second": 0.704,
"step": 4200
},
{
"epoch": 0.39,
"grad_norm": 0.15562959015369415,
"learning_rate": 0.0001610380083444134,
"loss": 1.8672,
"step": 4250
},
{
"epoch": 0.4,
"eval_bertscore": 0.7469989061355591,
"eval_loss": 1.900540828704834,
"eval_rouge1": 0.6620664558691891,
"eval_rouge2": 0.37299419371215703,
"eval_rougeL": 0.5765442194831125,
"eval_rougeLsum": 0.6472642385429858,
"eval_runtime": 21.9086,
"eval_samples_per_second": 1.369,
"eval_steps_per_second": 0.685,
"step": 4400
},
{
"epoch": 0.41,
"grad_norm": 0.15420928597450256,
"learning_rate": 0.0001587455870890835,
"loss": 1.8754,
"step": 4500
},
{
"epoch": 0.42,
"eval_bertscore": 0.7475299835205078,
"eval_loss": 1.8988685607910156,
"eval_rouge1": 0.6656661780424216,
"eval_rouge2": 0.37467258880478527,
"eval_rougeL": 0.5770800519970718,
"eval_rougeLsum": 0.6522703864288166,
"eval_runtime": 22.063,
"eval_samples_per_second": 1.36,
"eval_steps_per_second": 0.68,
"step": 4600
},
{
"epoch": 0.44,
"grad_norm": 0.15809176862239838,
"learning_rate": 0.00015645316583375363,
"loss": 1.8848,
"step": 4750
},
{
"epoch": 0.44,
"eval_bertscore": 0.7490234375,
"eval_loss": 1.8991097211837769,
"eval_rouge1": 0.6651730257289085,
"eval_rouge2": 0.3778893043274054,
"eval_rougeL": 0.5782673838033503,
"eval_rougeLsum": 0.6516865674488727,
"eval_runtime": 22.0202,
"eval_samples_per_second": 1.362,
"eval_steps_per_second": 0.681,
"step": 4800
},
{
"epoch": 0.46,
"grad_norm": 0.17979757487773895,
"learning_rate": 0.00015416074457842374,
"loss": 1.8851,
"step": 5000
},
{
"epoch": 0.46,
"eval_bertscore": 0.7492111325263977,
"eval_loss": 1.897339940071106,
"eval_rouge1": 0.665920573890169,
"eval_rouge2": 0.37917993898535385,
"eval_rougeL": 0.5800236892888617,
"eval_rougeLsum": 0.6529131688355863,
"eval_runtime": 21.6103,
"eval_samples_per_second": 1.388,
"eval_steps_per_second": 0.694,
"step": 5000
},
{
"epoch": 0.48,
"eval_bertscore": 0.7491253614425659,
"eval_loss": 1.897528052330017,
"eval_rouge1": 0.6653452054219615,
"eval_rouge2": 0.3759208437918665,
"eval_rougeL": 0.5776757077854651,
"eval_rougeLsum": 0.6511876484723524,
"eval_runtime": 21.3101,
"eval_samples_per_second": 1.408,
"eval_steps_per_second": 0.704,
"step": 5200
},
{
"epoch": 0.48,
"grad_norm": 0.16869671642780304,
"learning_rate": 0.00015186832332309387,
"loss": 1.8783,
"step": 5250
},
{
"epoch": 0.5,
"eval_bertscore": 0.7494469881057739,
"eval_loss": 1.895969271659851,
"eval_rouge1": 0.6660951369469854,
"eval_rouge2": 0.3764077134133328,
"eval_rougeL": 0.578785826234568,
"eval_rougeLsum": 0.6525967284041656,
"eval_runtime": 21.7955,
"eval_samples_per_second": 1.376,
"eval_steps_per_second": 0.688,
"step": 5400
},
{
"epoch": 0.5,
"grad_norm": 0.15996231138706207,
"learning_rate": 0.00014957590206776398,
"loss": 1.8805,
"step": 5500
},
{
"epoch": 0.51,
"eval_bertscore": 0.7486470341682434,
"eval_loss": 1.8955131769180298,
"eval_rouge1": 0.6670292173522965,
"eval_rouge2": 0.37457018529010144,
"eval_rougeL": 0.5775243235432015,
"eval_rougeLsum": 0.652574079807632,
"eval_runtime": 21.7576,
"eval_samples_per_second": 1.379,
"eval_steps_per_second": 0.689,
"step": 5600
},
{
"epoch": 0.53,
"grad_norm": 0.17192547023296356,
"learning_rate": 0.00014728348081243412,
"loss": 1.8884,
"step": 5750
},
{
"epoch": 0.53,
"eval_bertscore": 0.7483081817626953,
"eval_loss": 1.895763874053955,
"eval_rouge1": 0.6659275328276997,
"eval_rouge2": 0.3778666475350364,
"eval_rougeL": 0.579425140056643,
"eval_rougeLsum": 0.6515870828784887,
"eval_runtime": 21.6648,
"eval_samples_per_second": 1.385,
"eval_steps_per_second": 0.692,
"step": 5800
},
{
"epoch": 0.55,
"grad_norm": 0.15838442742824554,
"learning_rate": 0.00014499105955710422,
"loss": 1.8913,
"step": 6000
},
{
"epoch": 0.55,
"eval_bertscore": 0.7493732571601868,
"eval_loss": 1.8914682865142822,
"eval_rouge1": 0.6669695240447069,
"eval_rouge2": 0.3769441114214874,
"eval_rougeL": 0.5798986667152066,
"eval_rougeLsum": 0.6534527583592111,
"eval_runtime": 21.4686,
"eval_samples_per_second": 1.397,
"eval_steps_per_second": 0.699,
"step": 6000
},
{
"epoch": 0.57,
"eval_bertscore": 0.7510559558868408,
"eval_loss": 1.8923884630203247,
"eval_rouge1": 0.6677938121282943,
"eval_rouge2": 0.37854575387307554,
"eval_rougeL": 0.5817052753830161,
"eval_rougeLsum": 0.6534737907551461,
"eval_runtime": 21.593,
"eval_samples_per_second": 1.389,
"eval_steps_per_second": 0.695,
"step": 6200
},
{
"epoch": 0.57,
"grad_norm": 0.15312573313713074,
"learning_rate": 0.00014269863830177433,
"loss": 1.8705,
"step": 6250
},
{
"epoch": 0.59,
"eval_bertscore": 0.7479371428489685,
"eval_loss": 1.891802430152893,
"eval_rouge1": 0.6658674357402252,
"eval_rouge2": 0.3757712649269345,
"eval_rougeL": 0.5791817270712349,
"eval_rougeLsum": 0.6509960265397259,
"eval_runtime": 21.8726,
"eval_samples_per_second": 1.372,
"eval_steps_per_second": 0.686,
"step": 6400
},
{
"epoch": 0.6,
"grad_norm": 0.15844614803791046,
"learning_rate": 0.00014040621704644447,
"loss": 1.8643,
"step": 6500
},
{
"epoch": 0.61,
"eval_bertscore": 0.7484550476074219,
"eval_loss": 1.8903728723526,
"eval_rouge1": 0.6683828816523312,
"eval_rouge2": 0.37811618722345436,
"eval_rougeL": 0.5802581730590705,
"eval_rougeLsum": 0.6534402764651661,
"eval_runtime": 21.8343,
"eval_samples_per_second": 1.374,
"eval_steps_per_second": 0.687,
"step": 6600
},
{
"epoch": 0.62,
"grad_norm": 0.1661410629749298,
"learning_rate": 0.00013811379579111458,
"loss": 1.877,
"step": 6750
},
{
"epoch": 0.62,
"eval_bertscore": 0.747416615486145,
"eval_loss": 1.8915189504623413,
"eval_rouge1": 0.6644777881148224,
"eval_rouge2": 0.3747657029706615,
"eval_rougeL": 0.5793454557198501,
"eval_rougeLsum": 0.6521716611395593,
"eval_runtime": 21.523,
"eval_samples_per_second": 1.394,
"eval_steps_per_second": 0.697,
"step": 6800
},
{
"epoch": 0.64,
"grad_norm": 0.16483080387115479,
"learning_rate": 0.00013582137453578468,
"loss": 1.8792,
"step": 7000
},
{
"epoch": 0.64,
"eval_bertscore": 0.7480576634407043,
"eval_loss": 1.8913365602493286,
"eval_rouge1": 0.6655764268912302,
"eval_rouge2": 0.3757671289735428,
"eval_rougeL": 0.577951380212153,
"eval_rougeLsum": 0.6507587412359694,
"eval_runtime": 21.3067,
"eval_samples_per_second": 1.408,
"eval_steps_per_second": 0.704,
"step": 7000
},
{
"epoch": 0.66,
"eval_bertscore": 0.7505319714546204,
"eval_loss": 1.889721155166626,
"eval_rouge1": 0.6706532239207523,
"eval_rouge2": 0.37986537729431724,
"eval_rougeL": 0.5824624008038861,
"eval_rougeLsum": 0.6571986550416876,
"eval_runtime": 21.8193,
"eval_samples_per_second": 1.375,
"eval_steps_per_second": 0.687,
"step": 7200
},
{
"epoch": 0.66,
"grad_norm": 0.1685444712638855,
"learning_rate": 0.00013352895328045482,
"loss": 1.8748,
"step": 7250
},
{
"epoch": 0.68,
"eval_bertscore": 0.7472131252288818,
"eval_loss": 1.889514684677124,
"eval_rouge1": 0.6647481520892182,
"eval_rouge2": 0.3727968089505218,
"eval_rougeL": 0.5772333167389081,
"eval_rougeLsum": 0.6503920840351167,
"eval_runtime": 21.5794,
"eval_samples_per_second": 1.39,
"eval_steps_per_second": 0.695,
"step": 7400
},
{
"epoch": 0.69,
"grad_norm": 0.16196218132972717,
"learning_rate": 0.00013123653202512493,
"loss": 1.8958,
"step": 7500
},
{
"epoch": 0.7,
"eval_bertscore": 0.7467525005340576,
"eval_loss": 1.8874704837799072,
"eval_rouge1": 0.6652789954777591,
"eval_rouge2": 0.3747211875622626,
"eval_rougeL": 0.5781018250975862,
"eval_rougeLsum": 0.6512065884264598,
"eval_runtime": 21.6436,
"eval_samples_per_second": 1.386,
"eval_steps_per_second": 0.693,
"step": 7600
},
{
"epoch": 0.71,
"grad_norm": 0.17379231750965118,
"learning_rate": 0.00012894411076979506,
"loss": 1.8655,
"step": 7750
},
{
"epoch": 0.72,
"eval_bertscore": 0.7478018403053284,
"eval_loss": 1.8879252672195435,
"eval_rouge1": 0.6676077444849423,
"eval_rouge2": 0.37550824667101645,
"eval_rougeL": 0.5792625587400696,
"eval_rougeLsum": 0.6537654224373248,
"eval_runtime": 21.8026,
"eval_samples_per_second": 1.376,
"eval_steps_per_second": 0.688,
"step": 7800
},
{
"epoch": 0.73,
"grad_norm": 0.17975503206253052,
"learning_rate": 0.00012665168951446517,
"loss": 1.8593,
"step": 8000
},
{
"epoch": 0.73,
"eval_bertscore": 0.7490061521530151,
"eval_loss": 1.8872514963150024,
"eval_rouge1": 0.6677074837057098,
"eval_rouge2": 0.37723681410973775,
"eval_rougeL": 0.5806554105436175,
"eval_rougeLsum": 0.6531691046113964,
"eval_runtime": 21.2682,
"eval_samples_per_second": 1.411,
"eval_steps_per_second": 0.705,
"step": 8000
},
{
"epoch": 0.75,
"eval_bertscore": 0.7476587295532227,
"eval_loss": 1.8857940435409546,
"eval_rouge1": 0.6675733171919529,
"eval_rouge2": 0.37667421034338344,
"eval_rougeL": 0.5804128987718613,
"eval_rougeLsum": 0.6534287804714597,
"eval_runtime": 21.5325,
"eval_samples_per_second": 1.393,
"eval_steps_per_second": 0.697,
"step": 8200
},
{
"epoch": 0.76,
"grad_norm": 0.1596900373697281,
"learning_rate": 0.0001243592682591353,
"loss": 1.8627,
"step": 8250
},
{
"epoch": 0.77,
"eval_bertscore": 0.7444086074829102,
"eval_loss": 1.8874648809432983,
"eval_rouge1": 0.6633779669482168,
"eval_rouge2": 0.3710094509675216,
"eval_rougeL": 0.5760576627400225,
"eval_rougeLsum": 0.6499803336918719,
"eval_runtime": 21.4464,
"eval_samples_per_second": 1.399,
"eval_steps_per_second": 0.699,
"step": 8400
},
{
"epoch": 0.78,
"grad_norm": 0.16890183091163635,
"learning_rate": 0.00012206684700380542,
"loss": 1.8534,
"step": 8500
},
{
"epoch": 0.79,
"eval_bertscore": 0.7483052611351013,
"eval_loss": 1.8880757093429565,
"eval_rouge1": 0.6686948143176776,
"eval_rouge2": 0.3803796130427515,
"eval_rougeL": 0.5802459813261722,
"eval_rougeLsum": 0.6536962466082527,
"eval_runtime": 21.5416,
"eval_samples_per_second": 1.393,
"eval_steps_per_second": 0.696,
"step": 8600
},
{
"epoch": 0.8,
"grad_norm": 0.1596900373697281,
"learning_rate": 0.00011977442574847555,
"loss": 1.882,
"step": 8750
},
{
"epoch": 0.81,
"eval_bertscore": 0.748338520526886,
"eval_loss": 1.8871524333953857,
"eval_rouge1": 0.6673919143770407,
"eval_rouge2": 0.3761761743795482,
"eval_rougeL": 0.5797615995019129,
"eval_rougeLsum": 0.6526650363891257,
"eval_runtime": 21.8432,
"eval_samples_per_second": 1.373,
"eval_steps_per_second": 0.687,
"step": 8800
},
{
"epoch": 0.83,
"grad_norm": 0.16380883753299713,
"learning_rate": 0.00011748200449314565,
"loss": 1.8781,
"step": 9000
},
{
"epoch": 0.83,
"eval_bertscore": 0.7473989129066467,
"eval_loss": 1.885389804840088,
"eval_rouge1": 0.6660513187618474,
"eval_rouge2": 0.3728645884799071,
"eval_rougeL": 0.5767833607673931,
"eval_rougeLsum": 0.6518177265346137,
"eval_runtime": 21.5415,
"eval_samples_per_second": 1.393,
"eval_steps_per_second": 0.696,
"step": 9000
},
{
"epoch": 0.84,
"eval_bertscore": 0.7469697594642639,
"eval_loss": 1.8835673332214355,
"eval_rouge1": 0.6655382276884847,
"eval_rouge2": 0.3743925229327822,
"eval_rougeL": 0.5808516524350132,
"eval_rougeLsum": 0.6518276923554284,
"eval_runtime": 21.7289,
"eval_samples_per_second": 1.381,
"eval_steps_per_second": 0.69,
"step": 9200
},
{
"epoch": 0.85,
"grad_norm": 0.17286422848701477,
"learning_rate": 0.00011518958323781579,
"loss": 1.8672,
"step": 9250
},
{
"epoch": 0.86,
"eval_bertscore": 0.7491498589515686,
"eval_loss": 1.8845998048782349,
"eval_rouge1": 0.6670160490080832,
"eval_rouge2": 0.37860182825781935,
"eval_rougeL": 0.5797856034485049,
"eval_rougeLsum": 0.6531203725936218,
"eval_runtime": 21.5625,
"eval_samples_per_second": 1.391,
"eval_steps_per_second": 0.696,
"step": 9400
},
{
"epoch": 0.87,
"grad_norm": 0.16658568382263184,
"learning_rate": 0.0001128971619824859,
"loss": 1.8691,
"step": 9500
},
{
"epoch": 0.88,
"eval_bertscore": 0.7493313550949097,
"eval_loss": 1.8821747303009033,
"eval_rouge1": 0.6659791441681278,
"eval_rouge2": 0.3796033834485131,
"eval_rougeL": 0.580414529806212,
"eval_rougeLsum": 0.6528068238734432,
"eval_runtime": 21.8698,
"eval_samples_per_second": 1.372,
"eval_steps_per_second": 0.686,
"step": 9600
},
{
"epoch": 0.89,
"grad_norm": 0.1733073741197586,
"learning_rate": 0.00011060474072715603,
"loss": 1.8575,
"step": 9750
},
{
"epoch": 0.9,
"eval_bertscore": 0.7497690320014954,
"eval_loss": 1.8809062242507935,
"eval_rouge1": 0.6683202809005669,
"eval_rouge2": 0.379647408271533,
"eval_rougeL": 0.5812799059293663,
"eval_rougeLsum": 0.6549076224428805,
"eval_runtime": 21.461,
"eval_samples_per_second": 1.398,
"eval_steps_per_second": 0.699,
"step": 9800
},
{
"epoch": 0.92,
"grad_norm": 0.16828681528568268,
"learning_rate": 0.00010831231947182614,
"loss": 1.8799,
"step": 10000
},
{
"epoch": 0.92,
"eval_bertscore": 0.7487274408340454,
"eval_loss": 1.8800114393234253,
"eval_rouge1": 0.6694707226380743,
"eval_rouge2": 0.37780830529690856,
"eval_rougeL": 0.5789377835641822,
"eval_rougeLsum": 0.6540561492044448,
"eval_runtime": 21.6228,
"eval_samples_per_second": 1.387,
"eval_steps_per_second": 0.694,
"step": 10000
},
{
"epoch": 0.94,
"eval_bertscore": 0.7495086789131165,
"eval_loss": 1.8811218738555908,
"eval_rouge1": 0.6714277794869861,
"eval_rouge2": 0.3814957239141348,
"eval_rougeL": 0.5817721016839257,
"eval_rougeLsum": 0.6566092952916721,
"eval_runtime": 23.1282,
"eval_samples_per_second": 1.297,
"eval_steps_per_second": 0.649,
"step": 10200
},
{
"epoch": 0.94,
"grad_norm": 0.16498848795890808,
"learning_rate": 0.00010601989821649627,
"loss": 1.8656,
"step": 10250
},
{
"epoch": 0.95,
"eval_bertscore": 0.749505877494812,
"eval_loss": 1.8809926509857178,
"eval_rouge1": 0.6720420767359538,
"eval_rouge2": 0.38239237549289784,
"eval_rougeL": 0.5825845512902208,
"eval_rougeLsum": 0.6590116525116119,
"eval_runtime": 21.5266,
"eval_samples_per_second": 1.394,
"eval_steps_per_second": 0.697,
"step": 10400
},
{
"epoch": 0.96,
"grad_norm": 0.1661728322505951,
"learning_rate": 0.00010372747696116638,
"loss": 1.8633,
"step": 10500
},
{
"epoch": 0.97,
"eval_bertscore": 0.7484509944915771,
"eval_loss": 1.8795918226242065,
"eval_rouge1": 0.66861224256168,
"eval_rouge2": 0.3810938571231235,
"eval_rougeL": 0.581338929419374,
"eval_rougeLsum": 0.6556287448758898,
"eval_runtime": 21.6144,
"eval_samples_per_second": 1.388,
"eval_steps_per_second": 0.694,
"step": 10600
},
{
"epoch": 0.99,
"grad_norm": 0.1695539355278015,
"learning_rate": 0.00010143505570583652,
"loss": 1.8778,
"step": 10750
},
{
"epoch": 0.99,
"eval_bertscore": 0.747430145740509,
"eval_loss": 1.8807307481765747,
"eval_rouge1": 0.6659775067192504,
"eval_rouge2": 0.37723044840422537,
"eval_rougeL": 0.5790798830214317,
"eval_rougeLsum": 0.6509981906464294,
"eval_runtime": 21.9658,
"eval_samples_per_second": 1.366,
"eval_steps_per_second": 0.683,
"step": 10800
},
{
"epoch": 1.01,
"grad_norm": 0.18244074285030365,
"learning_rate": 9.914263445050664e-05,
"loss": 1.8425,
"step": 11000
},
{
"epoch": 1.01,
"eval_bertscore": 0.7464674711227417,
"eval_loss": 1.8850181102752686,
"eval_rouge1": 0.6682062462715245,
"eval_rouge2": 0.377961045305675,
"eval_rougeL": 0.5785946041032981,
"eval_rougeLsum": 0.6544658695180745,
"eval_runtime": 21.4985,
"eval_samples_per_second": 1.395,
"eval_steps_per_second": 0.698,
"step": 11000
},
{
"epoch": 1.03,
"eval_bertscore": 0.748903214931488,
"eval_loss": 1.8819694519042969,
"eval_rouge1": 0.6702994540242251,
"eval_rouge2": 0.38293287997414793,
"eval_rougeL": 0.5814513237567966,
"eval_rougeLsum": 0.6559726946972199,
"eval_runtime": 21.4139,
"eval_samples_per_second": 1.401,
"eval_steps_per_second": 0.7,
"step": 11200
},
{
"epoch": 1.03,
"grad_norm": 0.17693208158016205,
"learning_rate": 9.685021319517676e-05,
"loss": 1.8016,
"step": 11250
},
{
"epoch": 1.05,
"eval_bertscore": 0.7492591738700867,
"eval_loss": 1.8827041387557983,
"eval_rouge1": 0.6691453593118961,
"eval_rouge2": 0.3798853572019327,
"eval_rougeL": 0.5809966833392892,
"eval_rougeLsum": 0.6558794288097127,
"eval_runtime": 21.4988,
"eval_samples_per_second": 1.395,
"eval_steps_per_second": 0.698,
"step": 11400
},
{
"epoch": 1.05,
"grad_norm": 0.19059012830257416,
"learning_rate": 9.455779193984687e-05,
"loss": 1.806,
"step": 11500
},
{
"epoch": 1.06,
"eval_bertscore": 0.7471604943275452,
"eval_loss": 1.8825455904006958,
"eval_rouge1": 0.666961451977486,
"eval_rouge2": 0.37886614565714727,
"eval_rougeL": 0.5782594534845417,
"eval_rougeLsum": 0.6527754475869945,
"eval_runtime": 21.6349,
"eval_samples_per_second": 1.387,
"eval_steps_per_second": 0.693,
"step": 11600
},
{
"epoch": 1.08,
"grad_norm": 0.17817597091197968,
"learning_rate": 9.226537068451699e-05,
"loss": 1.8087,
"step": 11750
},
{
"epoch": 1.08,
"eval_bertscore": 0.7492148876190186,
"eval_loss": 1.8826088905334473,
"eval_rouge1": 0.6677645500651761,
"eval_rouge2": 0.3804313457558821,
"eval_rougeL": 0.5808965378999502,
"eval_rougeLsum": 0.654710106622618,
"eval_runtime": 21.938,
"eval_samples_per_second": 1.367,
"eval_steps_per_second": 0.684,
"step": 11800
},
{
"epoch": 1.1,
"grad_norm": 0.1762418895959854,
"learning_rate": 8.997294942918711e-05,
"loss": 1.806,
"step": 12000
},
{
"epoch": 1.1,
"eval_bertscore": 0.748414933681488,
"eval_loss": 1.8811677694320679,
"eval_rouge1": 0.6688262090158613,
"eval_rouge2": 0.38050452253222067,
"eval_rougeL": 0.5800878428874158,
"eval_rougeLsum": 0.6541444781570895,
"eval_runtime": 21.4244,
"eval_samples_per_second": 1.4,
"eval_steps_per_second": 0.7,
"step": 12000
},
{
"epoch": 1.12,
"eval_bertscore": 0.7469298243522644,
"eval_loss": 1.8827059268951416,
"eval_rouge1": 0.667125898932208,
"eval_rouge2": 0.37762418321204805,
"eval_rougeL": 0.5799787290068156,
"eval_rougeLsum": 0.6549075242794395,
"eval_runtime": 21.4415,
"eval_samples_per_second": 1.399,
"eval_steps_per_second": 0.7,
"step": 12200
},
{
"epoch": 1.12,
"grad_norm": 0.1830277293920517,
"learning_rate": 8.768969785887855e-05,
"loss": 1.805,
"step": 12250
},
{
"epoch": 1.14,
"eval_bertscore": 0.7483015060424805,
"eval_loss": 1.881732702255249,
"eval_rouge1": 0.6693189289720543,
"eval_rouge2": 0.37779647405803307,
"eval_rougeL": 0.579417997628969,
"eval_rougeLsum": 0.6561505915526004,
"eval_runtime": 21.6773,
"eval_samples_per_second": 1.384,
"eval_steps_per_second": 0.692,
"step": 12400
},
{
"epoch": 1.15,
"grad_norm": 0.20985420048236847,
"learning_rate": 8.539727660354867e-05,
"loss": 1.8041,
"step": 12500
},
{
"epoch": 1.16,
"eval_bertscore": 0.7499834895133972,
"eval_loss": 1.88084077835083,
"eval_rouge1": 0.6683080555468759,
"eval_rouge2": 0.38032152133281283,
"eval_rougeL": 0.5810300348705915,
"eval_rougeLsum": 0.6551372270660842,
"eval_runtime": 21.938,
"eval_samples_per_second": 1.367,
"eval_steps_per_second": 0.684,
"step": 12600
},
{
"epoch": 1.17,
"grad_norm": 0.20808811485767365,
"learning_rate": 8.310485534821879e-05,
"loss": 1.8043,
"step": 12750
},
{
"epoch": 1.17,
"eval_bertscore": 0.7486943602561951,
"eval_loss": 1.8817172050476074,
"eval_rouge1": 0.6679189638795886,
"eval_rouge2": 0.37996382910514515,
"eval_rougeL": 0.5796001956914257,
"eval_rougeLsum": 0.6541573673696073,
"eval_runtime": 21.4517,
"eval_samples_per_second": 1.398,
"eval_steps_per_second": 0.699,
"step": 12800
},
{
"epoch": 1.19,
"grad_norm": 0.19789676368236542,
"learning_rate": 8.081243409288891e-05,
"loss": 1.8104,
"step": 13000
},
{
"epoch": 1.19,
"eval_bertscore": 0.7485721111297607,
"eval_loss": 1.8802907466888428,
"eval_rouge1": 0.668951397016855,
"eval_rouge2": 0.38314927037432045,
"eval_rougeL": 0.5820242941832685,
"eval_rougeLsum": 0.6560871373685493,
"eval_runtime": 21.3721,
"eval_samples_per_second": 1.404,
"eval_steps_per_second": 0.702,
"step": 13000
},
{
"epoch": 1.21,
"eval_bertscore": 0.7488210201263428,
"eval_loss": 1.8801518678665161,
"eval_rouge1": 0.6681750569025893,
"eval_rouge2": 0.3830518663470647,
"eval_rougeL": 0.5816389393632242,
"eval_rougeLsum": 0.6553053524341508,
"eval_runtime": 21.4475,
"eval_samples_per_second": 1.399,
"eval_steps_per_second": 0.699,
"step": 13200
},
{
"epoch": 1.21,
"grad_norm": 0.19557170569896698,
"learning_rate": 7.852918252258036e-05,
"loss": 1.8084,
"step": 13250
},
{
"epoch": 1.23,
"eval_bertscore": 0.7466821074485779,
"eval_loss": 1.8802975416183472,
"eval_rouge1": 0.6692308825749019,
"eval_rouge2": 0.3797078912220652,
"eval_rougeL": 0.57946258450119,
"eval_rougeLsum": 0.6557113213245774,
"eval_runtime": 21.6946,
"eval_samples_per_second": 1.383,
"eval_steps_per_second": 0.691,
"step": 13400
},
{
"epoch": 1.24,
"grad_norm": 0.19721853733062744,
"learning_rate": 7.623676126725048e-05,
"loss": 1.8012,
"step": 13500
},
{
"epoch": 1.25,
"eval_bertscore": 0.7490766048431396,
"eval_loss": 1.879605770111084,
"eval_rouge1": 0.6691678070748814,
"eval_rouge2": 0.38107433365298127,
"eval_rougeL": 0.582338054172935,
"eval_rougeLsum": 0.6568902383643855,
"eval_runtime": 21.9275,
"eval_samples_per_second": 1.368,
"eval_steps_per_second": 0.684,
"step": 13600
},
{
"epoch": 1.26,
"grad_norm": 0.19349583983421326,
"learning_rate": 7.39443400119206e-05,
"loss": 1.8132,
"step": 13750
},
{
"epoch": 1.27,
"eval_bertscore": 0.7497549653053284,
"eval_loss": 1.8792203664779663,
"eval_rouge1": 0.6703179001918691,
"eval_rouge2": 0.38180410252380825,
"eval_rougeL": 0.581713046285296,
"eval_rougeLsum": 0.6565956659165899,
"eval_runtime": 21.7786,
"eval_samples_per_second": 1.377,
"eval_steps_per_second": 0.689,
"step": 13800
},
{
"epoch": 1.28,
"grad_norm": 0.18819653987884521,
"learning_rate": 7.165191875659071e-05,
"loss": 1.795,
"step": 14000
},
{
"epoch": 1.28,
"eval_bertscore": 0.7478053569793701,
"eval_loss": 1.8781208992004395,
"eval_rouge1": 0.6688044844978054,
"eval_rouge2": 0.37870372415583714,
"eval_rougeL": 0.5806120369243599,
"eval_rougeLsum": 0.656028802830182,
"eval_runtime": 21.4342,
"eval_samples_per_second": 1.4,
"eval_steps_per_second": 0.7,
"step": 14000
},
{
"epoch": 1.3,
"eval_bertscore": 0.7475939989089966,
"eval_loss": 1.8773213624954224,
"eval_rouge1": 0.667032693915823,
"eval_rouge2": 0.3795140911798196,
"eval_rougeL": 0.5786210918791265,
"eval_rougeLsum": 0.6533008623658665,
"eval_runtime": 21.5164,
"eval_samples_per_second": 1.394,
"eval_steps_per_second": 0.697,
"step": 14200
},
{
"epoch": 1.31,
"grad_norm": 0.19872260093688965,
"learning_rate": 6.935949750126083e-05,
"loss": 1.7976,
"step": 14250
},
{
"epoch": 1.32,
"eval_bertscore": 0.7471275925636292,
"eval_loss": 1.8771331310272217,
"eval_rouge1": 0.6667652243798369,
"eval_rouge2": 0.37965290088537884,
"eval_rougeL": 0.579195466508265,
"eval_rougeLsum": 0.6541987464482506,
"eval_runtime": 21.9596,
"eval_samples_per_second": 1.366,
"eval_steps_per_second": 0.683,
"step": 14400
},
{
"epoch": 1.33,
"grad_norm": 0.19071438908576965,
"learning_rate": 6.706707624593096e-05,
"loss": 1.8006,
"step": 14500
},
{
"epoch": 1.34,
"eval_bertscore": 0.7461450099945068,
"eval_loss": 1.8777822256088257,
"eval_rouge1": 0.6669898597726542,
"eval_rouge2": 0.3782385552798212,
"eval_rougeL": 0.5796365414022566,
"eval_rougeLsum": 0.6528838747342096,
"eval_runtime": 21.6208,
"eval_samples_per_second": 1.388,
"eval_steps_per_second": 0.694,
"step": 14600
},
{
"epoch": 1.35,
"grad_norm": 0.19506482779979706,
"learning_rate": 6.477465499060108e-05,
"loss": 1.7882,
"step": 14750
},
{
"epoch": 1.36,
"eval_bertscore": 0.747409462928772,
"eval_loss": 1.8792914152145386,
"eval_rouge1": 0.6669117838841465,
"eval_rouge2": 0.3791329545106853,
"eval_rougeL": 0.5807099307844747,
"eval_rougeLsum": 0.6525940508835434,
"eval_runtime": 21.4537,
"eval_samples_per_second": 1.398,
"eval_steps_per_second": 0.699,
"step": 14800
},
{
"epoch": 1.38,
"grad_norm": 0.1862572729587555,
"learning_rate": 6.24822337352712e-05,
"loss": 1.8003,
"step": 15000
},
{
"epoch": 1.38,
"eval_bertscore": 0.7468252778053284,
"eval_loss": 1.8783739805221558,
"eval_rouge1": 0.6659411055423619,
"eval_rouge2": 0.37915153029321835,
"eval_rougeL": 0.580055071443369,
"eval_rougeLsum": 0.6528870644277731,
"eval_runtime": 21.6683,
"eval_samples_per_second": 1.385,
"eval_steps_per_second": 0.692,
"step": 15000
},
{
"epoch": 1.39,
"eval_bertscore": 0.7472605109214783,
"eval_loss": 1.8782368898391724,
"eval_rouge1": 0.6652680954338304,
"eval_rouge2": 0.38147625565924226,
"eval_rougeL": 0.5806304267235345,
"eval_rougeLsum": 0.6527746910018182,
"eval_runtime": 21.5107,
"eval_samples_per_second": 1.395,
"eval_steps_per_second": 0.697,
"step": 15200
},
{
"epoch": 1.4,
"grad_norm": 0.1981302946805954,
"learning_rate": 6.018981247994132e-05,
"loss": 1.7888,
"step": 15250
},
{
"epoch": 1.41,
"eval_bertscore": 0.748733401298523,
"eval_loss": 1.8776911497116089,
"eval_rouge1": 0.6701404636250196,
"eval_rouge2": 0.38067643698280296,
"eval_rougeL": 0.581655600787955,
"eval_rougeLsum": 0.6566958727733392,
"eval_runtime": 21.8083,
"eval_samples_per_second": 1.376,
"eval_steps_per_second": 0.688,
"step": 15400
},
{
"epoch": 1.42,
"grad_norm": 0.20492762327194214,
"learning_rate": 5.789739122461144e-05,
"loss": 1.8073,
"step": 15500
},
{
"epoch": 1.43,
"eval_bertscore": 0.7469387650489807,
"eval_loss": 1.8760439157485962,
"eval_rouge1": 0.6673699082883823,
"eval_rouge2": 0.37919315875066184,
"eval_rougeL": 0.5792508361698389,
"eval_rougeLsum": 0.6529526214032775,
"eval_runtime": 21.5883,
"eval_samples_per_second": 1.39,
"eval_steps_per_second": 0.695,
"step": 15600
},
{
"epoch": 1.44,
"grad_norm": 0.20142768323421478,
"learning_rate": 5.560496996928156e-05,
"loss": 1.8024,
"step": 15750
},
{
"epoch": 1.45,
"eval_bertscore": 0.7471965551376343,
"eval_loss": 1.8758026361465454,
"eval_rouge1": 0.667590982597795,
"eval_rouge2": 0.3771596510278207,
"eval_rougeL": 0.5793107728247822,
"eval_rougeLsum": 0.6538557764632947,
"eval_runtime": 21.5657,
"eval_samples_per_second": 1.391,
"eval_steps_per_second": 0.696,
"step": 15800
},
{
"epoch": 1.47,
"grad_norm": 0.20283374190330505,
"learning_rate": 5.3312548713951684e-05,
"loss": 1.7944,
"step": 16000
},
{
"epoch": 1.47,
"eval_bertscore": 0.7459941506385803,
"eval_loss": 1.8763011693954468,
"eval_rouge1": 0.6658463821002156,
"eval_rouge2": 0.3775585742505041,
"eval_rougeL": 0.5789043156113151,
"eval_rougeLsum": 0.6524780721270875,
"eval_runtime": 21.4943,
"eval_samples_per_second": 1.396,
"eval_steps_per_second": 0.698,
"step": 16000
},
{
"epoch": 1.49,
"eval_bertscore": 0.7484962940216064,
"eval_loss": 1.8733354806900024,
"eval_rouge1": 0.6674179055624143,
"eval_rouge2": 0.38084170844736465,
"eval_rougeL": 0.5794959404229213,
"eval_rougeLsum": 0.6545746480465326,
"eval_runtime": 21.3882,
"eval_samples_per_second": 1.403,
"eval_steps_per_second": 0.701,
"step": 16200
},
{
"epoch": 1.49,
"grad_norm": 0.20431004464626312,
"learning_rate": 5.1029297143643115e-05,
"loss": 1.7964,
"step": 16250
},
{
"epoch": 1.5,
"eval_bertscore": 0.7474973797798157,
"eval_loss": 1.8748364448547363,
"eval_rouge1": 0.6669270423534657,
"eval_rouge2": 0.38136143363893454,
"eval_rougeL": 0.5807569104492998,
"eval_rougeLsum": 0.6532955804605866,
"eval_runtime": 21.4125,
"eval_samples_per_second": 1.401,
"eval_steps_per_second": 0.701,
"step": 16400
},
{
"epoch": 1.51,
"grad_norm": 0.19695881009101868,
"learning_rate": 4.8736875888313236e-05,
"loss": 1.7937,
"step": 16500
},
{
"epoch": 1.52,
"eval_bertscore": 0.7457157373428345,
"eval_loss": 1.873939037322998,
"eval_rouge1": 0.6655268933205816,
"eval_rouge2": 0.3789838815914194,
"eval_rougeL": 0.5792567329501453,
"eval_rougeLsum": 0.6515303808621891,
"eval_runtime": 21.8316,
"eval_samples_per_second": 1.374,
"eval_steps_per_second": 0.687,
"step": 16600
},
{
"epoch": 1.54,
"grad_norm": 0.19893115758895874,
"learning_rate": 4.644445463298336e-05,
"loss": 1.7968,
"step": 16750
},
{
"epoch": 1.54,
"eval_bertscore": 0.7473366260528564,
"eval_loss": 1.8731892108917236,
"eval_rouge1": 0.6686600471865416,
"eval_rouge2": 0.3811582407326848,
"eval_rougeL": 0.5819198001344217,
"eval_rougeLsum": 0.655875074137708,
"eval_runtime": 21.5003,
"eval_samples_per_second": 1.395,
"eval_steps_per_second": 0.698,
"step": 16800
},
{
"epoch": 1.56,
"grad_norm": 0.19495722651481628,
"learning_rate": 4.415203337765348e-05,
"loss": 1.7849,
"step": 17000
},
{
"epoch": 1.56,
"eval_bertscore": 0.7464762926101685,
"eval_loss": 1.873336911201477,
"eval_rouge1": 0.6654418531185011,
"eval_rouge2": 0.3776448896966703,
"eval_rougeL": 0.5793603117256503,
"eval_rougeLsum": 0.6523892148934154,
"eval_runtime": 21.4328,
"eval_samples_per_second": 1.4,
"eval_steps_per_second": 0.7,
"step": 17000
},
{
"epoch": 1.58,
"eval_bertscore": 0.7496260404586792,
"eval_loss": 1.8732831478118896,
"eval_rouge1": 0.6695331741909121,
"eval_rouge2": 0.3848397670391728,
"eval_rougeL": 0.5826011957000221,
"eval_rougeLsum": 0.6559651474362543,
"eval_runtime": 23.3709,
"eval_samples_per_second": 1.284,
"eval_steps_per_second": 0.642,
"step": 17200
},
{
"epoch": 1.58,
"grad_norm": 0.2031787633895874,
"learning_rate": 4.18596121223236e-05,
"loss": 1.8038,
"step": 17250
},
{
"epoch": 1.6,
"eval_bertscore": 0.7479040026664734,
"eval_loss": 1.8733012676239014,
"eval_rouge1": 0.6690232708067638,
"eval_rouge2": 0.38280671677809486,
"eval_rougeL": 0.5813409349779964,
"eval_rougeLsum": 0.6561148247702023,
"eval_runtime": 21.4492,
"eval_samples_per_second": 1.399,
"eval_steps_per_second": 0.699,
"step": 17400
},
{
"epoch": 1.6,
"grad_norm": 0.20188522338867188,
"learning_rate": 3.956719086699372e-05,
"loss": 1.8069,
"step": 17500
},
{
"epoch": 1.61,
"eval_bertscore": 0.7474852204322815,
"eval_loss": 1.8731153011322021,
"eval_rouge1": 0.6683729961873233,
"eval_rouge2": 0.37987887454957014,
"eval_rougeL": 0.5817199942471698,
"eval_rougeLsum": 0.6545525120639384,
"eval_runtime": 21.5296,
"eval_samples_per_second": 1.393,
"eval_steps_per_second": 0.697,
"step": 17600
},
{
"epoch": 1.63,
"grad_norm": 0.20668338239192963,
"learning_rate": 3.727476961166384e-05,
"loss": 1.7925,
"step": 17750
},
{
"epoch": 1.63,
"eval_bertscore": 0.7489749789237976,
"eval_loss": 1.8713935613632202,
"eval_rouge1": 0.6706330515420078,
"eval_rouge2": 0.38557159600601054,
"eval_rougeL": 0.5824249724164801,
"eval_rougeLsum": 0.6571336619637618,
"eval_runtime": 31.4197,
"eval_samples_per_second": 0.955,
"eval_steps_per_second": 0.477,
"step": 17800
},
{
"epoch": 1.65,
"grad_norm": 0.19653914868831635,
"learning_rate": 3.498234835633396e-05,
"loss": 1.7901,
"step": 18000
},
{
"epoch": 1.65,
"eval_bertscore": 0.74810791015625,
"eval_loss": 1.8703532218933105,
"eval_rouge1": 0.6670583779076373,
"eval_rouge2": 0.3815872952542743,
"eval_rougeL": 0.5802977699083451,
"eval_rougeLsum": 0.652851514670655,
"eval_runtime": 22.249,
"eval_samples_per_second": 1.348,
"eval_steps_per_second": 0.674,
"step": 18000
},
{
"epoch": 1.67,
"eval_bertscore": 0.7461541891098022,
"eval_loss": 1.870367407798767,
"eval_rouge1": 0.666353422895557,
"eval_rouge2": 0.37664402324672647,
"eval_rougeL": 0.5788595171529809,
"eval_rougeLsum": 0.6526592103852401,
"eval_runtime": 21.6959,
"eval_samples_per_second": 1.383,
"eval_steps_per_second": 0.691,
"step": 18200
},
{
"epoch": 1.67,
"grad_norm": 0.19944801926612854,
"learning_rate": 3.268992710100408e-05,
"loss": 1.7998,
"step": 18250
},
{
"epoch": 1.69,
"eval_bertscore": 0.7466973662376404,
"eval_loss": 1.869212031364441,
"eval_rouge1": 0.6671178256652617,
"eval_rouge2": 0.37988643514794995,
"eval_rougeL": 0.5794602206498677,
"eval_rougeLsum": 0.6524537679576896,
"eval_runtime": 21.6137,
"eval_samples_per_second": 1.388,
"eval_steps_per_second": 0.694,
"step": 18400
},
{
"epoch": 1.7,
"grad_norm": 0.20678329467773438,
"learning_rate": 3.03975058456742e-05,
"loss": 1.7887,
"step": 18500
},
{
"epoch": 1.71,
"eval_bertscore": 0.7471583485603333,
"eval_loss": 1.8699010610580444,
"eval_rouge1": 0.6671439524561165,
"eval_rouge2": 0.3790408337141292,
"eval_rougeL": 0.5802493096253083,
"eval_rougeLsum": 0.6537469688369348,
"eval_runtime": 21.5645,
"eval_samples_per_second": 1.391,
"eval_steps_per_second": 0.696,
"step": 18600
},
{
"epoch": 1.72,
"grad_norm": 0.2074785977602005,
"learning_rate": 2.810508459034432e-05,
"loss": 1.7975,
"step": 18750
},
{
"epoch": 1.72,
"eval_bertscore": 0.7461689710617065,
"eval_loss": 1.8696510791778564,
"eval_rouge1": 0.6656936276941555,
"eval_rouge2": 0.3760849107119958,
"eval_rougeL": 0.578107119813485,
"eval_rougeLsum": 0.6519692359725938,
"eval_runtime": 21.4158,
"eval_samples_per_second": 1.401,
"eval_steps_per_second": 0.7,
"step": 18800
},
{
"epoch": 1.74,
"grad_norm": 0.19803307950496674,
"learning_rate": 2.5812663335014443e-05,
"loss": 1.7836,
"step": 19000
},
{
"epoch": 1.74,
"eval_bertscore": 0.7454385161399841,
"eval_loss": 1.8692806959152222,
"eval_rouge1": 0.6655440758799659,
"eval_rouge2": 0.375082853379731,
"eval_rougeL": 0.5773410844673665,
"eval_rougeLsum": 0.6518745590766926,
"eval_runtime": 21.506,
"eval_samples_per_second": 1.395,
"eval_steps_per_second": 0.697,
"step": 19000
},
{
"epoch": 1.76,
"eval_bertscore": 0.7455454468727112,
"eval_loss": 1.8689236640930176,
"eval_rouge1": 0.6661424215732961,
"eval_rouge2": 0.3763778919767591,
"eval_rougeL": 0.577606474187118,
"eval_rougeLsum": 0.6526297574253375,
"eval_runtime": 21.9728,
"eval_samples_per_second": 1.365,
"eval_steps_per_second": 0.683,
"step": 19200
}
],
"logging_steps": 250,
"max_steps": 21812,
"num_input_tokens_seen": 0,
"num_train_epochs": 2,
"save_steps": 800,
"total_flos": 1.294285231966126e+18,
"train_batch_size": 2,
"trial_name": null,
"trial_params": null
}