File size: 13,422 Bytes
2d6f02f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
{
  "best_metric": null,
  "best_model_checkpoint": null,
  "epoch": 0.44010452482464585,
  "eval_steps": 200,
  "global_step": 4800,
  "is_hyper_param_search": false,
  "is_local_process_zero": true,
  "is_world_process_zero": true,
  "log_history": [
    {
      "epoch": 0.02,
      "eval_bertscore": 0.7401605248451233,
      "eval_loss": 1.9530484676361084,
      "eval_rouge1": 0.6562857460474375,
      "eval_rouge2": 0.3640670727106235,
      "eval_rougeL": 0.5655212336424695,
      "eval_rougeLsum": 0.6414840198810386,
      "eval_runtime": 21.7196,
      "eval_samples_per_second": 1.381,
      "eval_steps_per_second": 0.691,
      "step": 200
    },
    {
      "epoch": 0.02,
      "grad_norm": 0.25105270743370056,
      "learning_rate": 0.00019771674842969145,
      "loss": 1.7353,
      "step": 250
    },
    {
      "epoch": 0.04,
      "eval_bertscore": 0.7432050108909607,
      "eval_loss": 1.9583823680877686,
      "eval_rouge1": 0.6554226269617707,
      "eval_rouge2": 0.36661086995296877,
      "eval_rougeL": 0.5637448790342183,
      "eval_rougeLsum": 0.6419796784912521,
      "eval_runtime": 21.9623,
      "eval_samples_per_second": 1.366,
      "eval_steps_per_second": 0.683,
      "step": 400
    },
    {
      "epoch": 0.05,
      "grad_norm": 0.26550447940826416,
      "learning_rate": 0.00019542432717436156,
      "loss": 1.7786,
      "step": 500
    },
    {
      "epoch": 0.06,
      "eval_bertscore": 0.7469045519828796,
      "eval_loss": 1.9245686531066895,
      "eval_rouge1": 0.6662431635890791,
      "eval_rouge2": 0.3735263724826765,
      "eval_rougeL": 0.5755071616151013,
      "eval_rougeLsum": 0.6538383087686117,
      "eval_runtime": 21.5302,
      "eval_samples_per_second": 1.393,
      "eval_steps_per_second": 0.697,
      "step": 600
    },
    {
      "epoch": 0.07,
      "grad_norm": 0.1538015753030777,
      "learning_rate": 0.0001931319059190317,
      "loss": 1.8851,
      "step": 750
    },
    {
      "epoch": 0.07,
      "eval_bertscore": 0.7442477941513062,
      "eval_loss": 1.9187489748001099,
      "eval_rouge1": 0.6606221897489035,
      "eval_rouge2": 0.368654563659435,
      "eval_rougeL": 0.5731546210408094,
      "eval_rougeLsum": 0.6470590823125606,
      "eval_runtime": 21.9831,
      "eval_samples_per_second": 1.365,
      "eval_steps_per_second": 0.682,
      "step": 800
    },
    {
      "epoch": 0.09,
      "grad_norm": 0.1681252270936966,
      "learning_rate": 0.0001908394846637018,
      "loss": 1.8919,
      "step": 1000
    },
    {
      "epoch": 0.09,
      "eval_bertscore": 0.7458053231239319,
      "eval_loss": 1.9159075021743774,
      "eval_rouge1": 0.6621259186456026,
      "eval_rouge2": 0.372024043683234,
      "eval_rougeL": 0.5743354509339939,
      "eval_rougeLsum": 0.6491550893780276,
      "eval_runtime": 21.7159,
      "eval_samples_per_second": 1.381,
      "eval_steps_per_second": 0.691,
      "step": 1000
    },
    {
      "epoch": 0.11,
      "eval_bertscore": 0.7468854784965515,
      "eval_loss": 1.9140182733535767,
      "eval_rouge1": 0.6626581781149132,
      "eval_rouge2": 0.37318557504782157,
      "eval_rougeL": 0.5759264203594217,
      "eval_rougeLsum": 0.6490702446275723,
      "eval_runtime": 21.6486,
      "eval_samples_per_second": 1.386,
      "eval_steps_per_second": 0.693,
      "step": 1200
    },
    {
      "epoch": 0.11,
      "grad_norm": 0.1552441120147705,
      "learning_rate": 0.00018854706340837193,
      "loss": 1.9052,
      "step": 1250
    },
    {
      "epoch": 0.13,
      "eval_bertscore": 0.7475314736366272,
      "eval_loss": 1.913794755935669,
      "eval_rouge1": 0.6648687174353192,
      "eval_rouge2": 0.3760379232448734,
      "eval_rougeL": 0.5784915488164926,
      "eval_rougeLsum": 0.6513864520108938,
      "eval_runtime": 21.664,
      "eval_samples_per_second": 1.385,
      "eval_steps_per_second": 0.692,
      "step": 1400
    },
    {
      "epoch": 0.14,
      "grad_norm": 0.14638397097587585,
      "learning_rate": 0.00018625464215304204,
      "loss": 1.8843,
      "step": 1500
    },
    {
      "epoch": 0.15,
      "eval_bertscore": 0.747238039970398,
      "eval_loss": 1.9117029905319214,
      "eval_rouge1": 0.6638085237198453,
      "eval_rouge2": 0.3742779818055127,
      "eval_rougeL": 0.5754209460423059,
      "eval_rougeLsum": 0.6506476155592722,
      "eval_runtime": 21.9308,
      "eval_samples_per_second": 1.368,
      "eval_steps_per_second": 0.684,
      "step": 1600
    },
    {
      "epoch": 0.16,
      "grad_norm": 0.15738993883132935,
      "learning_rate": 0.00018396222089771218,
      "loss": 1.8964,
      "step": 1750
    },
    {
      "epoch": 0.17,
      "eval_bertscore": 0.7473016381263733,
      "eval_loss": 1.9117563962936401,
      "eval_rouge1": 0.6620053151663765,
      "eval_rouge2": 0.37406692119411245,
      "eval_rougeL": 0.5758911607323577,
      "eval_rougeLsum": 0.6494070575604445,
      "eval_runtime": 21.6727,
      "eval_samples_per_second": 1.384,
      "eval_steps_per_second": 0.692,
      "step": 1800
    },
    {
      "epoch": 0.18,
      "grad_norm": 0.1588907092809677,
      "learning_rate": 0.00018166979964238228,
      "loss": 1.8827,
      "step": 2000
    },
    {
      "epoch": 0.18,
      "eval_bertscore": 0.7485987544059753,
      "eval_loss": 1.9126006364822388,
      "eval_rouge1": 0.6641836156334741,
      "eval_rouge2": 0.37320215574735827,
      "eval_rougeL": 0.5783015040447993,
      "eval_rougeLsum": 0.6522235940423647,
      "eval_runtime": 21.9759,
      "eval_samples_per_second": 1.365,
      "eval_steps_per_second": 0.683,
      "step": 2000
    },
    {
      "epoch": 0.2,
      "eval_bertscore": 0.7482583522796631,
      "eval_loss": 1.9075205326080322,
      "eval_rouge1": 0.6658219484766166,
      "eval_rouge2": 0.37723364952258465,
      "eval_rougeL": 0.5769040785174693,
      "eval_rougeLsum": 0.6511328888044219,
      "eval_runtime": 21.5892,
      "eval_samples_per_second": 1.39,
      "eval_steps_per_second": 0.695,
      "step": 2200
    },
    {
      "epoch": 0.21,
      "grad_norm": 0.15247465670108795,
      "learning_rate": 0.00017937737838705242,
      "loss": 1.8831,
      "step": 2250
    },
    {
      "epoch": 0.22,
      "eval_bertscore": 0.7460805177688599,
      "eval_loss": 1.9088668823242188,
      "eval_rouge1": 0.6627321043292516,
      "eval_rouge2": 0.3696581195003696,
      "eval_rougeL": 0.5740988544467178,
      "eval_rougeLsum": 0.6478729042661874,
      "eval_runtime": 21.9221,
      "eval_samples_per_second": 1.368,
      "eval_steps_per_second": 0.684,
      "step": 2400
    },
    {
      "epoch": 0.23,
      "grad_norm": 0.1587379276752472,
      "learning_rate": 0.00017708495713172253,
      "loss": 1.8829,
      "step": 2500
    },
    {
      "epoch": 0.24,
      "eval_bertscore": 0.7472203373908997,
      "eval_loss": 1.906219482421875,
      "eval_rouge1": 0.6637415370426804,
      "eval_rouge2": 0.37565276875837994,
      "eval_rougeL": 0.5773879369079004,
      "eval_rougeLsum": 0.6488719947518645,
      "eval_runtime": 21.8112,
      "eval_samples_per_second": 1.375,
      "eval_steps_per_second": 0.688,
      "step": 2600
    },
    {
      "epoch": 0.25,
      "grad_norm": 0.1558646410703659,
      "learning_rate": 0.00017479253587639266,
      "loss": 1.8978,
      "step": 2750
    },
    {
      "epoch": 0.26,
      "eval_bertscore": 0.7466126680374146,
      "eval_loss": 1.9045982360839844,
      "eval_rouge1": 0.6616225540296956,
      "eval_rouge2": 0.37370762164745913,
      "eval_rougeL": 0.5759418528371097,
      "eval_rougeLsum": 0.6479977636906877,
      "eval_runtime": 21.8772,
      "eval_samples_per_second": 1.371,
      "eval_steps_per_second": 0.686,
      "step": 2800
    },
    {
      "epoch": 0.28,
      "grad_norm": 0.14783035218715668,
      "learning_rate": 0.00017250011462106277,
      "loss": 1.8978,
      "step": 3000
    },
    {
      "epoch": 0.28,
      "eval_bertscore": 0.7485571503639221,
      "eval_loss": 1.9035439491271973,
      "eval_rouge1": 0.6664050030501707,
      "eval_rouge2": 0.379492440917784,
      "eval_rougeL": 0.5806973731221475,
      "eval_rougeLsum": 0.6524346156604702,
      "eval_runtime": 21.9217,
      "eval_samples_per_second": 1.369,
      "eval_steps_per_second": 0.684,
      "step": 3000
    },
    {
      "epoch": 0.29,
      "eval_bertscore": 0.7483461499214172,
      "eval_loss": 1.9022458791732788,
      "eval_rouge1": 0.6618989733136488,
      "eval_rouge2": 0.37377379177271053,
      "eval_rougeL": 0.5780989082173933,
      "eval_rougeLsum": 0.6490379362631586,
      "eval_runtime": 21.7847,
      "eval_samples_per_second": 1.377,
      "eval_steps_per_second": 0.689,
      "step": 3200
    },
    {
      "epoch": 0.3,
      "grad_norm": 0.16484151780605316,
      "learning_rate": 0.0001702076933657329,
      "loss": 1.8715,
      "step": 3250
    },
    {
      "epoch": 0.31,
      "eval_bertscore": 0.7490711212158203,
      "eval_loss": 1.9013088941574097,
      "eval_rouge1": 0.6638141306545007,
      "eval_rouge2": 0.37356255553691553,
      "eval_rougeL": 0.577975450251653,
      "eval_rougeLsum": 0.6492478632295806,
      "eval_runtime": 21.8807,
      "eval_samples_per_second": 1.371,
      "eval_steps_per_second": 0.686,
      "step": 3400
    },
    {
      "epoch": 0.32,
      "grad_norm": 0.14130128920078278,
      "learning_rate": 0.000167915272110403,
      "loss": 1.8819,
      "step": 3500
    },
    {
      "epoch": 0.33,
      "eval_bertscore": 0.7475283741950989,
      "eval_loss": 1.9002223014831543,
      "eval_rouge1": 0.6628836314413511,
      "eval_rouge2": 0.37179988805094977,
      "eval_rougeL": 0.5764222388923268,
      "eval_rougeLsum": 0.649864229310889,
      "eval_runtime": 22.124,
      "eval_samples_per_second": 1.356,
      "eval_steps_per_second": 0.678,
      "step": 3600
    },
    {
      "epoch": 0.34,
      "grad_norm": 0.1494186818599701,
      "learning_rate": 0.00016562285085507315,
      "loss": 1.8828,
      "step": 3750
    },
    {
      "epoch": 0.35,
      "eval_bertscore": 0.7486498951911926,
      "eval_loss": 1.9011151790618896,
      "eval_rouge1": 0.6669673680023924,
      "eval_rouge2": 0.3771780440183751,
      "eval_rougeL": 0.5792518624130161,
      "eval_rougeLsum": 0.6534484242953056,
      "eval_runtime": 21.813,
      "eval_samples_per_second": 1.375,
      "eval_steps_per_second": 0.688,
      "step": 3800
    },
    {
      "epoch": 0.37,
      "grad_norm": 0.14803479611873627,
      "learning_rate": 0.00016333042959974325,
      "loss": 1.8761,
      "step": 4000
    },
    {
      "epoch": 0.37,
      "eval_bertscore": 0.7471507787704468,
      "eval_loss": 1.9001713991165161,
      "eval_rouge1": 0.6651735220672027,
      "eval_rouge2": 0.3736698451416937,
      "eval_rougeL": 0.5779938808281732,
      "eval_rougeLsum": 0.6509815118131576,
      "eval_runtime": 21.5004,
      "eval_samples_per_second": 1.395,
      "eval_steps_per_second": 0.698,
      "step": 4000
    },
    {
      "epoch": 0.39,
      "eval_bertscore": 0.7485501766204834,
      "eval_loss": 1.8993827104568481,
      "eval_rouge1": 0.6646424082737133,
      "eval_rouge2": 0.37318485364862475,
      "eval_rougeL": 0.5773338159759467,
      "eval_rougeLsum": 0.6507594353103527,
      "eval_runtime": 21.2963,
      "eval_samples_per_second": 1.409,
      "eval_steps_per_second": 0.704,
      "step": 4200
    },
    {
      "epoch": 0.39,
      "grad_norm": 0.15562959015369415,
      "learning_rate": 0.0001610380083444134,
      "loss": 1.8672,
      "step": 4250
    },
    {
      "epoch": 0.4,
      "eval_bertscore": 0.7469989061355591,
      "eval_loss": 1.900540828704834,
      "eval_rouge1": 0.6620664558691891,
      "eval_rouge2": 0.37299419371215703,
      "eval_rougeL": 0.5765442194831125,
      "eval_rougeLsum": 0.6472642385429858,
      "eval_runtime": 21.9086,
      "eval_samples_per_second": 1.369,
      "eval_steps_per_second": 0.685,
      "step": 4400
    },
    {
      "epoch": 0.41,
      "grad_norm": 0.15420928597450256,
      "learning_rate": 0.0001587455870890835,
      "loss": 1.8754,
      "step": 4500
    },
    {
      "epoch": 0.42,
      "eval_bertscore": 0.7475299835205078,
      "eval_loss": 1.8988685607910156,
      "eval_rouge1": 0.6656661780424216,
      "eval_rouge2": 0.37467258880478527,
      "eval_rougeL": 0.5770800519970718,
      "eval_rougeLsum": 0.6522703864288166,
      "eval_runtime": 22.063,
      "eval_samples_per_second": 1.36,
      "eval_steps_per_second": 0.68,
      "step": 4600
    },
    {
      "epoch": 0.44,
      "grad_norm": 0.15809176862239838,
      "learning_rate": 0.00015645316583375363,
      "loss": 1.8848,
      "step": 4750
    },
    {
      "epoch": 0.44,
      "eval_bertscore": 0.7490234375,
      "eval_loss": 1.8991097211837769,
      "eval_rouge1": 0.6651730257289085,
      "eval_rouge2": 0.3778893043274054,
      "eval_rougeL": 0.5782673838033503,
      "eval_rougeLsum": 0.6516865674488727,
      "eval_runtime": 22.0202,
      "eval_samples_per_second": 1.362,
      "eval_steps_per_second": 0.681,
      "step": 4800
    }
  ],
  "logging_steps": 250,
  "max_steps": 21812,
  "num_input_tokens_seen": 0,
  "num_train_epochs": 2,
  "save_steps": 800,
  "total_flos": 3.23575521214464e+17,
  "train_batch_size": 2,
  "trial_name": null,
  "trial_params": null
}