allstax's picture
Upload folder using huggingface_hub
0b97e40 verified
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 2.6428205274249588,
"eval_steps": 200,
"global_step": 23200,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"grad_norm": 0.1643640249967575,
"learning_rate": 0.0001988891104338166,
"loss": 1.7673,
"step": 200
},
{
"epoch": 0.02,
"eval_bertscore": 0.7312520742416382,
"eval_loss": 1.7944419384002686,
"eval_rouge1": 0.645726048132668,
"eval_rouge2": 0.342840307585653,
"eval_rougeL": 0.5174784271125388,
"eval_rougeLsum": 0.6359911842715976,
"eval_runtime": 67.7968,
"eval_samples_per_second": 0.147,
"eval_steps_per_second": 0.074,
"step": 200
},
{
"epoch": 0.05,
"grad_norm": 0.17238478362560272,
"learning_rate": 0.00019774973651978238,
"loss": 1.6985,
"step": 400
},
{
"epoch": 0.05,
"eval_bertscore": 0.733666718006134,
"eval_loss": 1.7791178226470947,
"eval_rouge1": 0.6540909153028596,
"eval_rouge2": 0.3548819059818129,
"eval_rougeL": 0.527257232694246,
"eval_rougeLsum": 0.6442799950994005,
"eval_runtime": 15.1267,
"eval_samples_per_second": 0.661,
"eval_steps_per_second": 0.331,
"step": 400
},
{
"epoch": 0.07,
"grad_norm": 0.19368696212768555,
"learning_rate": 0.00019661036260574814,
"loss": 1.6962,
"step": 600
},
{
"epoch": 0.07,
"eval_bertscore": 0.7339462041854858,
"eval_loss": 1.7609882354736328,
"eval_rouge1": 0.6384337329686338,
"eval_rouge2": 0.3415514270662107,
"eval_rougeL": 0.51206080148464,
"eval_rougeLsum": 0.6261968614666548,
"eval_runtime": 15.2068,
"eval_samples_per_second": 0.658,
"eval_steps_per_second": 0.329,
"step": 600
},
{
"epoch": 0.09,
"grad_norm": 0.18629203736782074,
"learning_rate": 0.00019547098869171392,
"loss": 1.6825,
"step": 800
},
{
"epoch": 0.09,
"eval_bertscore": 0.7363594174385071,
"eval_loss": 1.7610784769058228,
"eval_rouge1": 0.6461624591922237,
"eval_rouge2": 0.3477371388439609,
"eval_rougeL": 0.5187429174752844,
"eval_rougeLsum": 0.6361089823008282,
"eval_runtime": 15.173,
"eval_samples_per_second": 0.659,
"eval_steps_per_second": 0.33,
"step": 800
},
{
"epoch": 0.11,
"grad_norm": 0.1799013316631317,
"learning_rate": 0.00019433161477767967,
"loss": 1.6848,
"step": 1000
},
{
"epoch": 0.11,
"eval_bertscore": 0.7334067225456238,
"eval_loss": 1.7576347589492798,
"eval_rouge1": 0.6345119236349537,
"eval_rouge2": 0.3422519149071803,
"eval_rougeL": 0.5111983101326238,
"eval_rougeLsum": 0.6244653120436832,
"eval_runtime": 15.2847,
"eval_samples_per_second": 0.654,
"eval_steps_per_second": 0.327,
"step": 1000
},
{
"epoch": 0.14,
"grad_norm": 0.22036150097846985,
"learning_rate": 0.00019319224086364545,
"loss": 1.6714,
"step": 1200
},
{
"epoch": 0.14,
"eval_bertscore": 0.7323788404464722,
"eval_loss": 1.7521806955337524,
"eval_rouge1": 0.6452540184557478,
"eval_rouge2": 0.3465145726476423,
"eval_rougeL": 0.516711757588783,
"eval_rougeLsum": 0.6341049885677059,
"eval_runtime": 15.1247,
"eval_samples_per_second": 0.661,
"eval_steps_per_second": 0.331,
"step": 1200
},
{
"epoch": 0.16,
"grad_norm": 0.21381086111068726,
"learning_rate": 0.0001920528669496112,
"loss": 1.6669,
"step": 1400
},
{
"epoch": 0.16,
"eval_bertscore": 0.7313202619552612,
"eval_loss": 1.7520482540130615,
"eval_rouge1": 0.6397526546254797,
"eval_rouge2": 0.3452671288110514,
"eval_rougeL": 0.5176580626678706,
"eval_rougeLsum": 0.6296746647539768,
"eval_runtime": 15.183,
"eval_samples_per_second": 0.659,
"eval_steps_per_second": 0.329,
"step": 1400
},
{
"epoch": 0.18,
"grad_norm": 0.20332874357700348,
"learning_rate": 0.00019091349303557696,
"loss": 1.671,
"step": 1600
},
{
"epoch": 0.18,
"eval_bertscore": 0.7349230647087097,
"eval_loss": 1.7473630905151367,
"eval_rouge1": 0.637439872504459,
"eval_rouge2": 0.34307164454056094,
"eval_rougeL": 0.5129717676228565,
"eval_rougeLsum": 0.6272190896182391,
"eval_runtime": 15.5672,
"eval_samples_per_second": 0.642,
"eval_steps_per_second": 0.321,
"step": 1600
},
{
"epoch": 0.21,
"grad_norm": 0.2025599479675293,
"learning_rate": 0.00018977411912154274,
"loss": 1.6721,
"step": 1800
},
{
"epoch": 0.21,
"eval_bertscore": 0.7357184290885925,
"eval_loss": 1.7516342401504517,
"eval_rouge1": 0.6387615819926658,
"eval_rouge2": 0.34366787517105574,
"eval_rougeL": 0.5129026911770751,
"eval_rougeLsum": 0.6289314118258257,
"eval_runtime": 15.9574,
"eval_samples_per_second": 0.627,
"eval_steps_per_second": 0.313,
"step": 1800
},
{
"epoch": 0.23,
"grad_norm": 0.20457112789154053,
"learning_rate": 0.0001886347452075085,
"loss": 1.671,
"step": 2000
},
{
"epoch": 0.23,
"eval_bertscore": 0.733718752861023,
"eval_loss": 1.7501707077026367,
"eval_rouge1": 0.6346207681220664,
"eval_rouge2": 0.33748369437614106,
"eval_rougeL": 0.5085159047705141,
"eval_rougeLsum": 0.6239953154441167,
"eval_runtime": 15.0863,
"eval_samples_per_second": 0.663,
"eval_steps_per_second": 0.331,
"step": 2000
},
{
"epoch": 0.25,
"grad_norm": 0.22552740573883057,
"learning_rate": 0.00018749537129347424,
"loss": 1.6496,
"step": 2200
},
{
"epoch": 0.25,
"eval_bertscore": 0.7368552684783936,
"eval_loss": 1.7437107563018799,
"eval_rouge1": 0.6490756387878311,
"eval_rouge2": 0.3448817738175175,
"eval_rougeL": 0.5235187045706321,
"eval_rougeLsum": 0.6377780857890332,
"eval_runtime": 15.07,
"eval_samples_per_second": 0.664,
"eval_steps_per_second": 0.332,
"step": 2200
},
{
"epoch": 0.27,
"grad_norm": 0.22573673725128174,
"learning_rate": 0.00018635599737944,
"loss": 1.6629,
"step": 2400
},
{
"epoch": 0.27,
"eval_bertscore": 0.7314499616622925,
"eval_loss": 1.7462828159332275,
"eval_rouge1": 0.6511482369678803,
"eval_rouge2": 0.34632544827771805,
"eval_rougeL": 0.5212417191003778,
"eval_rougeLsum": 0.6415391907940229,
"eval_runtime": 15.2078,
"eval_samples_per_second": 0.658,
"eval_steps_per_second": 0.329,
"step": 2400
},
{
"epoch": 0.3,
"grad_norm": 0.26426687836647034,
"learning_rate": 0.00018521662346540575,
"loss": 1.6644,
"step": 2600
},
{
"epoch": 0.3,
"eval_bertscore": 0.7363359928131104,
"eval_loss": 1.7505037784576416,
"eval_rouge1": 0.6498296552335481,
"eval_rouge2": 0.34873833589761183,
"eval_rougeL": 0.5194028620820592,
"eval_rougeLsum": 0.6404603087578984,
"eval_runtime": 14.8403,
"eval_samples_per_second": 0.674,
"eval_steps_per_second": 0.337,
"step": 2600
},
{
"epoch": 0.32,
"grad_norm": 0.20142091810703278,
"learning_rate": 0.00018407724955137153,
"loss": 1.6535,
"step": 2800
},
{
"epoch": 0.32,
"eval_bertscore": 0.7304679155349731,
"eval_loss": 1.7511039972305298,
"eval_rouge1": 0.6475130585388738,
"eval_rouge2": 0.34648331046897884,
"eval_rougeL": 0.5218042284020985,
"eval_rougeLsum": 0.6382749834402862,
"eval_runtime": 15.0162,
"eval_samples_per_second": 0.666,
"eval_steps_per_second": 0.333,
"step": 2800
},
{
"epoch": 0.34,
"grad_norm": 0.23283220827579498,
"learning_rate": 0.00018293787563733728,
"loss": 1.6477,
"step": 3000
},
{
"epoch": 0.34,
"eval_bertscore": 0.7327049374580383,
"eval_loss": 1.7461665868759155,
"eval_rouge1": 0.6309349586871908,
"eval_rouge2": 0.3387882478990309,
"eval_rougeL": 0.5042059192403674,
"eval_rougeLsum": 0.6210432469674847,
"eval_runtime": 15.463,
"eval_samples_per_second": 0.647,
"eval_steps_per_second": 0.323,
"step": 3000
},
{
"epoch": 0.36,
"grad_norm": 0.21316750347614288,
"learning_rate": 0.00018179850172330306,
"loss": 1.6614,
"step": 3200
},
{
"epoch": 0.36,
"eval_bertscore": 0.7314620018005371,
"eval_loss": 1.7468239068984985,
"eval_rouge1": 0.6480904534152265,
"eval_rouge2": 0.3479530168963481,
"eval_rougeL": 0.5193148273848067,
"eval_rougeLsum": 0.6366010767207634,
"eval_runtime": 15.0381,
"eval_samples_per_second": 0.665,
"eval_steps_per_second": 0.332,
"step": 3200
},
{
"epoch": 0.39,
"grad_norm": 0.26080408692359924,
"learning_rate": 0.00018065912780926882,
"loss": 1.6591,
"step": 3400
},
{
"epoch": 0.39,
"eval_bertscore": 0.7327477335929871,
"eval_loss": 1.7442594766616821,
"eval_rouge1": 0.6424613378037144,
"eval_rouge2": 0.34731770322974903,
"eval_rougeL": 0.5160705879794565,
"eval_rougeLsum": 0.6327006420281607,
"eval_runtime": 15.5373,
"eval_samples_per_second": 0.644,
"eval_steps_per_second": 0.322,
"step": 3400
},
{
"epoch": 0.41,
"grad_norm": 0.23274216055870056,
"learning_rate": 0.0001795197538952346,
"loss": 1.6613,
"step": 3600
},
{
"epoch": 0.41,
"eval_bertscore": 0.736956000328064,
"eval_loss": 1.7429373264312744,
"eval_rouge1": 0.6514574160666677,
"eval_rouge2": 0.3556199242231646,
"eval_rougeL": 0.5249726237675663,
"eval_rougeLsum": 0.6406261097623661,
"eval_runtime": 14.9415,
"eval_samples_per_second": 0.669,
"eval_steps_per_second": 0.335,
"step": 3600
},
{
"epoch": 0.43,
"grad_norm": 0.23616766929626465,
"learning_rate": 0.00017838037998120035,
"loss": 1.6479,
"step": 3800
},
{
"epoch": 0.43,
"eval_bertscore": 0.7349627614021301,
"eval_loss": 1.7420669794082642,
"eval_rouge1": 0.655851684949526,
"eval_rouge2": 0.35254590691865084,
"eval_rougeL": 0.5248980956621441,
"eval_rougeLsum": 0.6449637270581419,
"eval_runtime": 15.4178,
"eval_samples_per_second": 0.649,
"eval_steps_per_second": 0.324,
"step": 3800
},
{
"epoch": 0.46,
"grad_norm": 0.23260319232940674,
"learning_rate": 0.0001772410060671661,
"loss": 1.6569,
"step": 4000
},
{
"epoch": 0.46,
"eval_bertscore": 0.7332885265350342,
"eval_loss": 1.7401313781738281,
"eval_rouge1": 0.6669483634140105,
"eval_rouge2": 0.35873988835161297,
"eval_rougeL": 0.5343868725007427,
"eval_rougeLsum": 0.6555353134690931,
"eval_runtime": 15.0822,
"eval_samples_per_second": 0.663,
"eval_steps_per_second": 0.332,
"step": 4000
},
{
"epoch": 0.48,
"grad_norm": 0.2366473525762558,
"learning_rate": 0.00017610163215313186,
"loss": 1.6599,
"step": 4200
},
{
"epoch": 0.48,
"eval_bertscore": 0.7335314750671387,
"eval_loss": 1.7385823726654053,
"eval_rouge1": 0.6559297063578133,
"eval_rouge2": 0.35483499789990636,
"eval_rougeL": 0.5297939800986089,
"eval_rougeLsum": 0.6454544372491222,
"eval_runtime": 15.1029,
"eval_samples_per_second": 0.662,
"eval_steps_per_second": 0.331,
"step": 4200
},
{
"epoch": 0.5,
"grad_norm": 0.20628753304481506,
"learning_rate": 0.0001749622582390976,
"loss": 1.6454,
"step": 4400
},
{
"epoch": 0.5,
"eval_bertscore": 0.7342795133590698,
"eval_loss": 1.7422058582305908,
"eval_rouge1": 0.660746519614568,
"eval_rouge2": 0.3633965895561597,
"eval_rougeL": 0.5369036980876734,
"eval_rougeLsum": 0.650338328328998,
"eval_runtime": 15.4434,
"eval_samples_per_second": 0.648,
"eval_steps_per_second": 0.324,
"step": 4400
},
{
"epoch": 0.52,
"grad_norm": 0.2239149957895279,
"learning_rate": 0.0001738228843250634,
"loss": 1.6594,
"step": 4600
},
{
"epoch": 0.52,
"eval_bertscore": 0.7313543558120728,
"eval_loss": 1.740854263305664,
"eval_rouge1": 0.6591645132619427,
"eval_rouge2": 0.35766117432431743,
"eval_rougeL": 0.532710255034635,
"eval_rougeLsum": 0.6479428185884644,
"eval_runtime": 14.9436,
"eval_samples_per_second": 0.669,
"eval_steps_per_second": 0.335,
"step": 4600
},
{
"epoch": 0.55,
"grad_norm": 0.24808338284492493,
"learning_rate": 0.00017268351041102914,
"loss": 1.6604,
"step": 4800
},
{
"epoch": 0.55,
"eval_bertscore": 0.7333321571350098,
"eval_loss": 1.7385585308074951,
"eval_rouge1": 0.6532115808232871,
"eval_rouge2": 0.35333788022501567,
"eval_rougeL": 0.5284071547874328,
"eval_rougeLsum": 0.6410472452797623,
"eval_runtime": 15.0277,
"eval_samples_per_second": 0.665,
"eval_steps_per_second": 0.333,
"step": 4800
},
{
"epoch": 0.57,
"grad_norm": 0.2555364966392517,
"learning_rate": 0.0001715441364969949,
"loss": 1.6493,
"step": 5000
},
{
"epoch": 0.57,
"eval_bertscore": 0.7318152189254761,
"eval_loss": 1.7357494831085205,
"eval_rouge1": 0.6476755890502586,
"eval_rouge2": 0.35312778275949164,
"eval_rougeL": 0.5227601228049905,
"eval_rougeLsum": 0.6371331138372852,
"eval_runtime": 14.8807,
"eval_samples_per_second": 0.672,
"eval_steps_per_second": 0.336,
"step": 5000
},
{
"epoch": 0.59,
"grad_norm": 0.21518155932426453,
"learning_rate": 0.00017040476258296068,
"loss": 1.644,
"step": 5200
},
{
"epoch": 0.59,
"eval_bertscore": 0.734805703163147,
"eval_loss": 1.74032723903656,
"eval_rouge1": 0.6476813733451636,
"eval_rouge2": 0.3509259728617576,
"eval_rougeL": 0.5221334872800274,
"eval_rougeLsum": 0.636892384667733,
"eval_runtime": 15.1271,
"eval_samples_per_second": 0.661,
"eval_steps_per_second": 0.331,
"step": 5200
},
{
"epoch": 0.62,
"grad_norm": 0.26086658239364624,
"learning_rate": 0.00016926538866892643,
"loss": 1.6449,
"step": 5400
},
{
"epoch": 0.62,
"eval_bertscore": 0.7339995503425598,
"eval_loss": 1.7338205575942993,
"eval_rouge1": 0.6416889902864902,
"eval_rouge2": 0.3479045880347737,
"eval_rougeL": 0.5160577838468976,
"eval_rougeLsum": 0.6317983411796093,
"eval_runtime": 14.9992,
"eval_samples_per_second": 0.667,
"eval_steps_per_second": 0.333,
"step": 5400
},
{
"epoch": 0.64,
"grad_norm": 0.25449469685554504,
"learning_rate": 0.0001681260147548922,
"loss": 1.6299,
"step": 5600
},
{
"epoch": 0.64,
"eval_bertscore": 0.7306328415870667,
"eval_loss": 1.7369228601455688,
"eval_rouge1": 0.6390760905985684,
"eval_rouge2": 0.3409328272828699,
"eval_rougeL": 0.5111832543685331,
"eval_rougeLsum": 0.6285753423407665,
"eval_runtime": 15.483,
"eval_samples_per_second": 0.646,
"eval_steps_per_second": 0.323,
"step": 5600
},
{
"epoch": 0.66,
"grad_norm": 0.24706102907657623,
"learning_rate": 0.00016698664084085796,
"loss": 1.6374,
"step": 5800
},
{
"epoch": 0.66,
"eval_bertscore": 0.732075572013855,
"eval_loss": 1.7343876361846924,
"eval_rouge1": 0.6378821977913272,
"eval_rouge2": 0.34619427775171585,
"eval_rougeL": 0.5120186953041237,
"eval_rougeLsum": 0.6284056323839109,
"eval_runtime": 15.7341,
"eval_samples_per_second": 0.636,
"eval_steps_per_second": 0.318,
"step": 5800
},
{
"epoch": 0.68,
"grad_norm": 0.24373260140419006,
"learning_rate": 0.00016584726692682372,
"loss": 1.6427,
"step": 6000
},
{
"epoch": 0.68,
"eval_bertscore": 0.7350374460220337,
"eval_loss": 1.729591965675354,
"eval_rouge1": 0.6516545226356616,
"eval_rouge2": 0.35485762033878543,
"eval_rougeL": 0.5249054193354852,
"eval_rougeLsum": 0.6411016821651583,
"eval_runtime": 15.5199,
"eval_samples_per_second": 0.644,
"eval_steps_per_second": 0.322,
"step": 6000
},
{
"epoch": 0.71,
"grad_norm": 0.24616578221321106,
"learning_rate": 0.0001647078930127895,
"loss": 1.6296,
"step": 6200
},
{
"epoch": 0.71,
"eval_bertscore": 0.7335461378097534,
"eval_loss": 1.7302274703979492,
"eval_rouge1": 0.6531411706717427,
"eval_rouge2": 0.35003053174601517,
"eval_rougeL": 0.5212483686089053,
"eval_rougeLsum": 0.6438454124825417,
"eval_runtime": 15.3058,
"eval_samples_per_second": 0.653,
"eval_steps_per_second": 0.327,
"step": 6200
},
{
"epoch": 0.73,
"grad_norm": 0.24500492215156555,
"learning_rate": 0.00016356851909875522,
"loss": 1.6251,
"step": 6400
},
{
"epoch": 0.73,
"eval_bertscore": 0.7347471714019775,
"eval_loss": 1.7292228937149048,
"eval_rouge1": 0.6565322485502556,
"eval_rouge2": 0.35887540291607073,
"eval_rougeL": 0.5284326132878907,
"eval_rougeLsum": 0.6469750895866724,
"eval_runtime": 14.9708,
"eval_samples_per_second": 0.668,
"eval_steps_per_second": 0.334,
"step": 6400
},
{
"epoch": 0.75,
"grad_norm": 0.26575228571891785,
"learning_rate": 0.000162429145184721,
"loss": 1.6389,
"step": 6600
},
{
"epoch": 0.75,
"eval_bertscore": 0.7319897413253784,
"eval_loss": 1.7287580966949463,
"eval_rouge1": 0.6458608801881298,
"eval_rouge2": 0.3503480901452204,
"eval_rougeL": 0.519626708150005,
"eval_rougeLsum": 0.6362405734928169,
"eval_runtime": 15.3509,
"eval_samples_per_second": 0.651,
"eval_steps_per_second": 0.326,
"step": 6600
},
{
"epoch": 0.77,
"grad_norm": 0.27144965529441833,
"learning_rate": 0.00016128977127068676,
"loss": 1.6476,
"step": 6800
},
{
"epoch": 0.77,
"eval_bertscore": 0.7392772436141968,
"eval_loss": 1.7257907390594482,
"eval_rouge1": 0.6543238897579965,
"eval_rouge2": 0.3606726049451984,
"eval_rougeL": 0.5317585887753791,
"eval_rougeLsum": 0.6452028420624081,
"eval_runtime": 15.0268,
"eval_samples_per_second": 0.665,
"eval_steps_per_second": 0.333,
"step": 6800
},
{
"epoch": 0.8,
"grad_norm": 0.2579711079597473,
"learning_rate": 0.00016015039735665254,
"loss": 1.6316,
"step": 7000
},
{
"epoch": 0.8,
"eval_bertscore": 0.7375612854957581,
"eval_loss": 1.7296981811523438,
"eval_rouge1": 0.658906725408624,
"eval_rouge2": 0.35825094165644866,
"eval_rougeL": 0.5323299193377959,
"eval_rougeLsum": 0.6500364347290426,
"eval_runtime": 14.9244,
"eval_samples_per_second": 0.67,
"eval_steps_per_second": 0.335,
"step": 7000
},
{
"epoch": 0.82,
"grad_norm": 0.2589207589626312,
"learning_rate": 0.0001590110234426183,
"loss": 1.6432,
"step": 7200
},
{
"epoch": 0.82,
"eval_bertscore": 0.735145092010498,
"eval_loss": 1.72720205783844,
"eval_rouge1": 0.6678646250245518,
"eval_rouge2": 0.36332843150846983,
"eval_rougeL": 0.537576430733886,
"eval_rougeLsum": 0.6579789388660506,
"eval_runtime": 14.9067,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.335,
"step": 7200
},
{
"epoch": 0.84,
"grad_norm": 0.26652559638023376,
"learning_rate": 0.00015787164952858404,
"loss": 1.6488,
"step": 7400
},
{
"epoch": 0.84,
"eval_bertscore": 0.7320755124092102,
"eval_loss": 1.7282931804656982,
"eval_rouge1": 0.6325633297780734,
"eval_rouge2": 0.34505856555703185,
"eval_rougeL": 0.5100006743383693,
"eval_rougeLsum": 0.6230385336341938,
"eval_runtime": 14.9075,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.335,
"step": 7400
},
{
"epoch": 0.87,
"grad_norm": 0.27353721857070923,
"learning_rate": 0.00015673227561454982,
"loss": 1.6486,
"step": 7600
},
{
"epoch": 0.87,
"eval_bertscore": 0.7367390394210815,
"eval_loss": 1.7290785312652588,
"eval_rouge1": 0.639487116874423,
"eval_rouge2": 0.3466574229736927,
"eval_rougeL": 0.515038120249177,
"eval_rougeLsum": 0.6301157215372983,
"eval_runtime": 15.0876,
"eval_samples_per_second": 0.663,
"eval_steps_per_second": 0.331,
"step": 7600
},
{
"epoch": 0.89,
"grad_norm": 0.24777938425540924,
"learning_rate": 0.00015559290170051558,
"loss": 1.6271,
"step": 7800
},
{
"epoch": 0.89,
"eval_bertscore": 0.735866904258728,
"eval_loss": 1.7264015674591064,
"eval_rouge1": 0.64939597901302,
"eval_rouge2": 0.3554282813944538,
"eval_rougeL": 0.5247953329477759,
"eval_rougeLsum": 0.6405524812915908,
"eval_runtime": 14.8892,
"eval_samples_per_second": 0.672,
"eval_steps_per_second": 0.336,
"step": 7800
},
{
"epoch": 0.91,
"grad_norm": 0.2703794538974762,
"learning_rate": 0.00015445352778648136,
"loss": 1.6415,
"step": 8000
},
{
"epoch": 0.91,
"eval_bertscore": 0.7325771450996399,
"eval_loss": 1.7271970510482788,
"eval_rouge1": 0.6659432894288253,
"eval_rouge2": 0.35962933912652617,
"eval_rougeL": 0.5385420432813512,
"eval_rougeLsum": 0.6557027031484046,
"eval_runtime": 14.8319,
"eval_samples_per_second": 0.674,
"eval_steps_per_second": 0.337,
"step": 8000
},
{
"epoch": 0.93,
"grad_norm": 0.28753793239593506,
"learning_rate": 0.0001533141538724471,
"loss": 1.6239,
"step": 8200
},
{
"epoch": 0.93,
"eval_bertscore": 0.7350013852119446,
"eval_loss": 1.7266199588775635,
"eval_rouge1": 0.6549282561414593,
"eval_rouge2": 0.35694530595734475,
"eval_rougeL": 0.5301601006964574,
"eval_rougeLsum": 0.6441779306137909,
"eval_runtime": 14.9005,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.336,
"step": 8200
},
{
"epoch": 0.96,
"grad_norm": 0.23870150744915009,
"learning_rate": 0.00015217477995841286,
"loss": 1.6293,
"step": 8400
},
{
"epoch": 0.96,
"eval_bertscore": 0.7271261811256409,
"eval_loss": 1.7256368398666382,
"eval_rouge1": 0.6515513829901936,
"eval_rouge2": 0.35217616104918836,
"eval_rougeL": 0.5236553509227138,
"eval_rougeLsum": 0.6411473505324752,
"eval_runtime": 14.9938,
"eval_samples_per_second": 0.667,
"eval_steps_per_second": 0.333,
"step": 8400
},
{
"epoch": 0.98,
"grad_norm": 0.28276997804641724,
"learning_rate": 0.00015103540604437861,
"loss": 1.6242,
"step": 8600
},
{
"epoch": 0.98,
"eval_bertscore": 0.7347334027290344,
"eval_loss": 1.717627763748169,
"eval_rouge1": 0.6350112495847634,
"eval_rouge2": 0.3477570751550898,
"eval_rougeL": 0.5146616989899861,
"eval_rougeLsum": 0.6246669376525157,
"eval_runtime": 15.7032,
"eval_samples_per_second": 0.637,
"eval_steps_per_second": 0.318,
"step": 8600
},
{
"epoch": 1.0,
"grad_norm": 0.24915842711925507,
"learning_rate": 0.00014989603213034437,
"loss": 1.6245,
"step": 8800
},
{
"epoch": 1.0,
"eval_bertscore": 0.7313701510429382,
"eval_loss": 1.7292964458465576,
"eval_rouge1": 0.6479528105367669,
"eval_rouge2": 0.35020983244262877,
"eval_rougeL": 0.5200907337780047,
"eval_rougeLsum": 0.6372896614836894,
"eval_runtime": 15.0043,
"eval_samples_per_second": 0.666,
"eval_steps_per_second": 0.333,
"step": 8800
},
{
"epoch": 1.03,
"grad_norm": 0.24036027491092682,
"learning_rate": 0.00014875665821631015,
"loss": 1.5364,
"step": 9000
},
{
"epoch": 1.03,
"eval_bertscore": 0.7327737808227539,
"eval_loss": 1.7339435815811157,
"eval_rouge1": 0.6568524178922349,
"eval_rouge2": 0.35560270713543163,
"eval_rougeL": 0.5310443670833082,
"eval_rougeLsum": 0.6480993679097387,
"eval_runtime": 14.9303,
"eval_samples_per_second": 0.67,
"eval_steps_per_second": 0.335,
"step": 9000
},
{
"epoch": 1.05,
"grad_norm": 0.2729027271270752,
"learning_rate": 0.0001476172843022759,
"loss": 1.5182,
"step": 9200
},
{
"epoch": 1.05,
"eval_bertscore": 0.7334672212600708,
"eval_loss": 1.739061713218689,
"eval_rouge1": 0.6552962187824329,
"eval_rouge2": 0.35210314124279196,
"eval_rougeL": 0.5272039052368354,
"eval_rougeLsum": 0.6437473533492806,
"eval_runtime": 15.5418,
"eval_samples_per_second": 0.643,
"eval_steps_per_second": 0.322,
"step": 9200
},
{
"epoch": 1.07,
"grad_norm": 0.2909716069698334,
"learning_rate": 0.00014647791038824168,
"loss": 1.5276,
"step": 9400
},
{
"epoch": 1.07,
"eval_bertscore": 0.7288902997970581,
"eval_loss": 1.736944556236267,
"eval_rouge1": 0.6533271685598301,
"eval_rouge2": 0.35279315321532184,
"eval_rougeL": 0.5262688234671329,
"eval_rougeLsum": 0.6424084937151033,
"eval_runtime": 15.1115,
"eval_samples_per_second": 0.662,
"eval_steps_per_second": 0.331,
"step": 9400
},
{
"epoch": 1.09,
"grad_norm": 0.3035859763622284,
"learning_rate": 0.00014533853647420743,
"loss": 1.5445,
"step": 9600
},
{
"epoch": 1.09,
"eval_bertscore": 0.7308284044265747,
"eval_loss": 1.737762689590454,
"eval_rouge1": 0.6619725777891359,
"eval_rouge2": 0.3611963714506864,
"eval_rougeL": 0.5363802967084452,
"eval_rougeLsum": 0.6516690557971352,
"eval_runtime": 14.9932,
"eval_samples_per_second": 0.667,
"eval_steps_per_second": 0.333,
"step": 9600
},
{
"epoch": 1.12,
"grad_norm": 0.26574915647506714,
"learning_rate": 0.0001441991625601732,
"loss": 1.5342,
"step": 9800
},
{
"epoch": 1.12,
"eval_bertscore": 0.7328712344169617,
"eval_loss": 1.7393991947174072,
"eval_rouge1": 0.6856504003396884,
"eval_rouge2": 0.3761098841062477,
"eval_rougeL": 0.555477293163325,
"eval_rougeLsum": 0.6757574283262289,
"eval_runtime": 14.8121,
"eval_samples_per_second": 0.675,
"eval_steps_per_second": 0.338,
"step": 9800
},
{
"epoch": 1.14,
"grad_norm": 0.315468430519104,
"learning_rate": 0.00014305978864613897,
"loss": 1.543,
"step": 10000
},
{
"epoch": 1.14,
"eval_bertscore": 0.7349387407302856,
"eval_loss": 1.7352710962295532,
"eval_rouge1": 0.6749953128982036,
"eval_rouge2": 0.3720385250530084,
"eval_rougeL": 0.5472261566474382,
"eval_rougeLsum": 0.6657643539219252,
"eval_runtime": 14.909,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.335,
"step": 10000
},
{
"epoch": 1.16,
"grad_norm": 0.29815027117729187,
"learning_rate": 0.00014192041473210472,
"loss": 1.5547,
"step": 10200
},
{
"epoch": 1.16,
"eval_bertscore": 0.7359883189201355,
"eval_loss": 1.7269136905670166,
"eval_rouge1": 0.6561141614088863,
"eval_rouge2": 0.3606175666303814,
"eval_rougeL": 0.5302270771032793,
"eval_rougeLsum": 0.6446912079521883,
"eval_runtime": 14.9527,
"eval_samples_per_second": 0.669,
"eval_steps_per_second": 0.334,
"step": 10200
},
{
"epoch": 1.18,
"grad_norm": 0.3595702350139618,
"learning_rate": 0.00014078104081807047,
"loss": 1.5567,
"step": 10400
},
{
"epoch": 1.18,
"eval_bertscore": 0.7328116297721863,
"eval_loss": 1.7341644763946533,
"eval_rouge1": 0.6420332714823549,
"eval_rouge2": 0.35094864549032,
"eval_rougeL": 0.5179556761398367,
"eval_rougeLsum": 0.631987397226809,
"eval_runtime": 15.1438,
"eval_samples_per_second": 0.66,
"eval_steps_per_second": 0.33,
"step": 10400
},
{
"epoch": 1.21,
"grad_norm": 0.2718666195869446,
"learning_rate": 0.00013964166690403623,
"loss": 1.5408,
"step": 10600
},
{
"epoch": 1.21,
"eval_bertscore": 0.7337731122970581,
"eval_loss": 1.7330901622772217,
"eval_rouge1": 0.661681342484687,
"eval_rouge2": 0.3626833509973693,
"eval_rougeL": 0.5329424447373774,
"eval_rougeLsum": 0.6519750177144633,
"eval_runtime": 14.8142,
"eval_samples_per_second": 0.675,
"eval_steps_per_second": 0.338,
"step": 10600
},
{
"epoch": 1.23,
"grad_norm": 0.29183274507522583,
"learning_rate": 0.00013850229299000198,
"loss": 1.5422,
"step": 10800
},
{
"epoch": 1.23,
"eval_bertscore": 0.7331051230430603,
"eval_loss": 1.7297636270523071,
"eval_rouge1": 0.6655497978238063,
"eval_rouge2": 0.3614235788441926,
"eval_rougeL": 0.5327210061667442,
"eval_rougeLsum": 0.6548836840483913,
"eval_runtime": 15.1359,
"eval_samples_per_second": 0.661,
"eval_steps_per_second": 0.33,
"step": 10800
},
{
"epoch": 1.25,
"grad_norm": 0.30979740619659424,
"learning_rate": 0.00013736291907596776,
"loss": 1.5372,
"step": 11000
},
{
"epoch": 1.25,
"eval_bertscore": 0.7312799692153931,
"eval_loss": 1.732444167137146,
"eval_rouge1": 0.6568292865033993,
"eval_rouge2": 0.35876682221562006,
"eval_rougeL": 0.5300878844981931,
"eval_rougeLsum": 0.6461751645858989,
"eval_runtime": 14.819,
"eval_samples_per_second": 0.675,
"eval_steps_per_second": 0.337,
"step": 11000
},
{
"epoch": 1.28,
"grad_norm": 0.31343138217926025,
"learning_rate": 0.0001362235451619335,
"loss": 1.5301,
"step": 11200
},
{
"epoch": 1.28,
"eval_bertscore": 0.7317885160446167,
"eval_loss": 1.7358499765396118,
"eval_rouge1": 0.6548673097943329,
"eval_rouge2": 0.3609116081432997,
"eval_rougeL": 0.5279887650752133,
"eval_rougeLsum": 0.6466232329097188,
"eval_runtime": 14.8259,
"eval_samples_per_second": 0.674,
"eval_steps_per_second": 0.337,
"step": 11200
},
{
"epoch": 1.3,
"grad_norm": 0.36181533336639404,
"learning_rate": 0.0001350841712478993,
"loss": 1.5421,
"step": 11400
},
{
"epoch": 1.3,
"eval_bertscore": 0.7316756248474121,
"eval_loss": 1.7282969951629639,
"eval_rouge1": 0.6551882964480251,
"eval_rouge2": 0.3580708921400697,
"eval_rougeL": 0.5255367305995147,
"eval_rougeLsum": 0.6449192953008009,
"eval_runtime": 14.8816,
"eval_samples_per_second": 0.672,
"eval_steps_per_second": 0.336,
"step": 11400
},
{
"epoch": 1.32,
"grad_norm": 0.30600836873054504,
"learning_rate": 0.00013394479733386505,
"loss": 1.5538,
"step": 11600
},
{
"epoch": 1.32,
"eval_bertscore": 0.7311854362487793,
"eval_loss": 1.7313562631607056,
"eval_rouge1": 0.6592751199424156,
"eval_rouge2": 0.35802855072854206,
"eval_rougeL": 0.5297288176377084,
"eval_rougeLsum": 0.6489455314962717,
"eval_runtime": 15.0693,
"eval_samples_per_second": 0.664,
"eval_steps_per_second": 0.332,
"step": 11600
},
{
"epoch": 1.34,
"grad_norm": 0.29904893040657043,
"learning_rate": 0.0001328054234198308,
"loss": 1.5328,
"step": 11800
},
{
"epoch": 1.34,
"eval_bertscore": 0.7312635183334351,
"eval_loss": 1.7318429946899414,
"eval_rouge1": 0.6577169369077195,
"eval_rouge2": 0.3582474830918887,
"eval_rougeL": 0.5314990647771975,
"eval_rougeLsum": 0.6454785220479866,
"eval_runtime": 15.0235,
"eval_samples_per_second": 0.666,
"eval_steps_per_second": 0.333,
"step": 11800
},
{
"epoch": 1.37,
"grad_norm": 0.3025416433811188,
"learning_rate": 0.00013166604950579658,
"loss": 1.5349,
"step": 12000
},
{
"epoch": 1.37,
"eval_bertscore": 0.7325812578201294,
"eval_loss": 1.7309118509292603,
"eval_rouge1": 0.6629133074951261,
"eval_rouge2": 0.3678158453940578,
"eval_rougeL": 0.5380936907276155,
"eval_rougeLsum": 0.654883061928214,
"eval_runtime": 14.7666,
"eval_samples_per_second": 0.677,
"eval_steps_per_second": 0.339,
"step": 12000
},
{
"epoch": 1.39,
"grad_norm": 0.34982389211654663,
"learning_rate": 0.00013052667559176233,
"loss": 1.5513,
"step": 12200
},
{
"epoch": 1.39,
"eval_bertscore": 0.7340582609176636,
"eval_loss": 1.7363474369049072,
"eval_rouge1": 0.6555817937418287,
"eval_rouge2": 0.35630500078358396,
"eval_rougeL": 0.5272412353478366,
"eval_rougeLsum": 0.6445837479327643,
"eval_runtime": 14.9664,
"eval_samples_per_second": 0.668,
"eval_steps_per_second": 0.334,
"step": 12200
},
{
"epoch": 1.41,
"grad_norm": 0.35809043049812317,
"learning_rate": 0.0001293873016777281,
"loss": 1.5444,
"step": 12400
},
{
"epoch": 1.41,
"eval_bertscore": 0.7334069013595581,
"eval_loss": 1.7328729629516602,
"eval_rouge1": 0.6617971237669364,
"eval_rouge2": 0.35951260376512423,
"eval_rougeL": 0.5345512305507059,
"eval_rougeLsum": 0.648363531132752,
"eval_runtime": 15.2146,
"eval_samples_per_second": 0.657,
"eval_steps_per_second": 0.329,
"step": 12400
},
{
"epoch": 1.44,
"grad_norm": 0.2954196631908417,
"learning_rate": 0.00012824792776369387,
"loss": 1.5406,
"step": 12600
},
{
"epoch": 1.44,
"eval_bertscore": 0.7321678400039673,
"eval_loss": 1.7335160970687866,
"eval_rouge1": 0.6573625593086756,
"eval_rouge2": 0.36210525247389347,
"eval_rougeL": 0.5379361120230158,
"eval_rougeLsum": 0.6459787883452857,
"eval_runtime": 14.8942,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.336,
"step": 12600
},
{
"epoch": 1.46,
"grad_norm": 0.32190588116645813,
"learning_rate": 0.00012710855384965962,
"loss": 1.5491,
"step": 12800
},
{
"epoch": 1.46,
"eval_bertscore": 0.7346011400222778,
"eval_loss": 1.7364966869354248,
"eval_rouge1": 0.6481210247390559,
"eval_rouge2": 0.3521173896017687,
"eval_rougeL": 0.5240500581372636,
"eval_rougeLsum": 0.63706442433335,
"eval_runtime": 14.923,
"eval_samples_per_second": 0.67,
"eval_steps_per_second": 0.335,
"step": 12800
},
{
"epoch": 1.48,
"grad_norm": 0.33323267102241516,
"learning_rate": 0.00012596917993562537,
"loss": 1.5596,
"step": 13000
},
{
"epoch": 1.48,
"eval_bertscore": 0.7331587076187134,
"eval_loss": 1.7332260608673096,
"eval_rouge1": 0.6561257401878793,
"eval_rouge2": 0.3548063723792664,
"eval_rougeL": 0.527807776001489,
"eval_rougeLsum": 0.6451911907984706,
"eval_runtime": 15.4703,
"eval_samples_per_second": 0.646,
"eval_steps_per_second": 0.323,
"step": 13000
},
{
"epoch": 1.5,
"grad_norm": 0.3564057946205139,
"learning_rate": 0.00012482980602159113,
"loss": 1.5261,
"step": 13200
},
{
"epoch": 1.5,
"eval_bertscore": 0.7306063771247864,
"eval_loss": 1.7368810176849365,
"eval_rouge1": 0.637722723890071,
"eval_rouge2": 0.3455358728458236,
"eval_rougeL": 0.5136372690435154,
"eval_rougeLsum": 0.6273570573595115,
"eval_runtime": 15.3533,
"eval_samples_per_second": 0.651,
"eval_steps_per_second": 0.326,
"step": 13200
},
{
"epoch": 1.53,
"grad_norm": 0.29219934344291687,
"learning_rate": 0.0001236904321075569,
"loss": 1.519,
"step": 13400
},
{
"epoch": 1.53,
"eval_bertscore": 0.7338696122169495,
"eval_loss": 1.734724998474121,
"eval_rouge1": 0.6442107446420164,
"eval_rouge2": 0.3494748457109431,
"eval_rougeL": 0.5207483892007314,
"eval_rougeLsum": 0.632886404907802,
"eval_runtime": 15.3077,
"eval_samples_per_second": 0.653,
"eval_steps_per_second": 0.327,
"step": 13400
},
{
"epoch": 1.55,
"grad_norm": 0.34681758284568787,
"learning_rate": 0.00012255105819352266,
"loss": 1.5419,
"step": 13600
},
{
"epoch": 1.55,
"eval_bertscore": 0.7350045442581177,
"eval_loss": 1.7329858541488647,
"eval_rouge1": 0.6606839869796519,
"eval_rouge2": 0.362188561160822,
"eval_rougeL": 0.5342033818317451,
"eval_rougeLsum": 0.6493340000068861,
"eval_runtime": 15.44,
"eval_samples_per_second": 0.648,
"eval_steps_per_second": 0.324,
"step": 13600
},
{
"epoch": 1.57,
"grad_norm": 0.3043666481971741,
"learning_rate": 0.00012141168427948844,
"loss": 1.5402,
"step": 13800
},
{
"epoch": 1.57,
"eval_bertscore": 0.7363221645355225,
"eval_loss": 1.7308530807495117,
"eval_rouge1": 0.6638252384356028,
"eval_rouge2": 0.3643237697892826,
"eval_rougeL": 0.5403775887381331,
"eval_rougeLsum": 0.6537260000827279,
"eval_runtime": 14.7668,
"eval_samples_per_second": 0.677,
"eval_steps_per_second": 0.339,
"step": 13800
},
{
"epoch": 1.59,
"grad_norm": 0.4073585867881775,
"learning_rate": 0.00012027231036545419,
"loss": 1.5256,
"step": 14000
},
{
"epoch": 1.59,
"eval_bertscore": 0.7310279607772827,
"eval_loss": 1.7326784133911133,
"eval_rouge1": 0.6609594314120198,
"eval_rouge2": 0.3601530714440473,
"eval_rougeL": 0.5344452687135626,
"eval_rougeLsum": 0.6480936554342305,
"eval_runtime": 14.8565,
"eval_samples_per_second": 0.673,
"eval_steps_per_second": 0.337,
"step": 14000
},
{
"epoch": 1.62,
"grad_norm": 0.3211813271045685,
"learning_rate": 0.00011913293645141995,
"loss": 1.5366,
"step": 14200
},
{
"epoch": 1.62,
"eval_bertscore": 0.7356667518615723,
"eval_loss": 1.7280094623565674,
"eval_rouge1": 0.6519353227375031,
"eval_rouge2": 0.3587025716186173,
"eval_rougeL": 0.5306356200586075,
"eval_rougeLsum": 0.6408870347994059,
"eval_runtime": 14.9264,
"eval_samples_per_second": 0.67,
"eval_steps_per_second": 0.335,
"step": 14200
},
{
"epoch": 1.64,
"grad_norm": 0.32776832580566406,
"learning_rate": 0.00011799356253738571,
"loss": 1.5504,
"step": 14400
},
{
"epoch": 1.64,
"eval_bertscore": 0.7331353425979614,
"eval_loss": 1.7308950424194336,
"eval_rouge1": 0.6627702292814652,
"eval_rouge2": 0.36117793957379707,
"eval_rougeL": 0.5369305446079228,
"eval_rougeLsum": 0.6516924083980089,
"eval_runtime": 16.0138,
"eval_samples_per_second": 0.624,
"eval_steps_per_second": 0.312,
"step": 14400
},
{
"epoch": 1.66,
"grad_norm": 0.3209726810455322,
"learning_rate": 0.00011685418862335147,
"loss": 1.5473,
"step": 14600
},
{
"epoch": 1.66,
"eval_bertscore": 0.732498824596405,
"eval_loss": 1.7328402996063232,
"eval_rouge1": 0.6482679740803596,
"eval_rouge2": 0.3538726087405498,
"eval_rougeL": 0.5267677183598017,
"eval_rougeLsum": 0.6366529460029322,
"eval_runtime": 15.0195,
"eval_samples_per_second": 0.666,
"eval_steps_per_second": 0.333,
"step": 14600
},
{
"epoch": 1.69,
"grad_norm": 0.3174591064453125,
"learning_rate": 0.00011571481470931725,
"loss": 1.5568,
"step": 14800
},
{
"epoch": 1.69,
"eval_bertscore": 0.7335298657417297,
"eval_loss": 1.7310253381729126,
"eval_rouge1": 0.6560468577439627,
"eval_rouge2": 0.36039371229175,
"eval_rougeL": 0.5318708569729291,
"eval_rougeLsum": 0.6444857558837042,
"eval_runtime": 14.9774,
"eval_samples_per_second": 0.668,
"eval_steps_per_second": 0.334,
"step": 14800
},
{
"epoch": 1.71,
"grad_norm": 0.2936408817768097,
"learning_rate": 0.000114575440795283,
"loss": 1.5345,
"step": 15000
},
{
"epoch": 1.71,
"eval_bertscore": 0.7322725057601929,
"eval_loss": 1.7270629405975342,
"eval_rouge1": 0.6387060930656672,
"eval_rouge2": 0.3480508127989137,
"eval_rougeL": 0.5148670834213287,
"eval_rougeLsum": 0.6273654952601909,
"eval_runtime": 15.6687,
"eval_samples_per_second": 0.638,
"eval_steps_per_second": 0.319,
"step": 15000
},
{
"epoch": 1.73,
"grad_norm": 0.32960689067840576,
"learning_rate": 0.00011343606688124875,
"loss": 1.5362,
"step": 15200
},
{
"epoch": 1.73,
"eval_bertscore": 0.7337037920951843,
"eval_loss": 1.7287395000457764,
"eval_rouge1": 0.6476816970229771,
"eval_rouge2": 0.3532248216683249,
"eval_rougeL": 0.5253136618838716,
"eval_rougeLsum": 0.6347493764394183,
"eval_runtime": 15.0045,
"eval_samples_per_second": 0.666,
"eval_steps_per_second": 0.333,
"step": 15200
},
{
"epoch": 1.75,
"grad_norm": 0.33265602588653564,
"learning_rate": 0.00011229669296721452,
"loss": 1.5215,
"step": 15400
},
{
"epoch": 1.75,
"eval_bertscore": 0.7330806851387024,
"eval_loss": 1.7265052795410156,
"eval_rouge1": 0.6529393512177359,
"eval_rouge2": 0.36182153145062224,
"eval_rougeL": 0.5317061134915853,
"eval_rougeLsum": 0.6413066299251913,
"eval_runtime": 15.0256,
"eval_samples_per_second": 0.666,
"eval_steps_per_second": 0.333,
"step": 15400
},
{
"epoch": 1.78,
"grad_norm": 0.3436201512813568,
"learning_rate": 0.00011115731905318027,
"loss": 1.539,
"step": 15600
},
{
"epoch": 1.78,
"eval_bertscore": 0.7335551977157593,
"eval_loss": 1.7254730463027954,
"eval_rouge1": 0.6388518781767971,
"eval_rouge2": 0.3501853846588857,
"eval_rougeL": 0.5196828245794569,
"eval_rougeLsum": 0.629333993884722,
"eval_runtime": 15.2595,
"eval_samples_per_second": 0.655,
"eval_steps_per_second": 0.328,
"step": 15600
},
{
"epoch": 1.8,
"grad_norm": 0.3428190350532532,
"learning_rate": 0.00011001794513914605,
"loss": 1.5273,
"step": 15800
},
{
"epoch": 1.8,
"eval_bertscore": 0.7331770658493042,
"eval_loss": 1.7286018133163452,
"eval_rouge1": 0.6581941047310954,
"eval_rouge2": 0.36277983926897583,
"eval_rougeL": 0.5336464680120501,
"eval_rougeLsum": 0.6489239720278894,
"eval_runtime": 14.8252,
"eval_samples_per_second": 0.675,
"eval_steps_per_second": 0.337,
"step": 15800
},
{
"epoch": 1.82,
"grad_norm": 0.363164484500885,
"learning_rate": 0.0001088785712251118,
"loss": 1.5445,
"step": 16000
},
{
"epoch": 1.82,
"eval_bertscore": 0.7377282977104187,
"eval_loss": 1.7363064289093018,
"eval_rouge1": 0.6547011011872876,
"eval_rouge2": 0.3553220826957326,
"eval_rougeL": 0.5256073814411315,
"eval_rougeLsum": 0.6420095316923398,
"eval_runtime": 14.8599,
"eval_samples_per_second": 0.673,
"eval_steps_per_second": 0.336,
"step": 16000
},
{
"epoch": 1.85,
"grad_norm": 0.3098333775997162,
"learning_rate": 0.00010773919731107757,
"loss": 1.5319,
"step": 16200
},
{
"epoch": 1.85,
"eval_bertscore": 0.7324053645133972,
"eval_loss": 1.7284066677093506,
"eval_rouge1": 0.6477379941950916,
"eval_rouge2": 0.3535918140554809,
"eval_rougeL": 0.5226838544730126,
"eval_rougeLsum": 0.6373271915355557,
"eval_runtime": 14.9318,
"eval_samples_per_second": 0.67,
"eval_steps_per_second": 0.335,
"step": 16200
},
{
"epoch": 1.87,
"grad_norm": 0.3637208938598633,
"learning_rate": 0.00010659982339704332,
"loss": 1.5442,
"step": 16400
},
{
"epoch": 1.87,
"eval_bertscore": 0.7347462773323059,
"eval_loss": 1.7252963781356812,
"eval_rouge1": 0.6494449840449819,
"eval_rouge2": 0.3586550050575282,
"eval_rougeL": 0.5275675395159809,
"eval_rougeLsum": 0.6396738714026391,
"eval_runtime": 15.2218,
"eval_samples_per_second": 0.657,
"eval_steps_per_second": 0.328,
"step": 16400
},
{
"epoch": 1.89,
"grad_norm": 0.35197457671165466,
"learning_rate": 0.00010546044948300908,
"loss": 1.5131,
"step": 16600
},
{
"epoch": 1.89,
"eval_bertscore": 0.7329785227775574,
"eval_loss": 1.7285687923431396,
"eval_rouge1": 0.6582047811143328,
"eval_rouge2": 0.3637700686094697,
"eval_rougeL": 0.5355021948480279,
"eval_rougeLsum": 0.6483245595148677,
"eval_runtime": 14.8772,
"eval_samples_per_second": 0.672,
"eval_steps_per_second": 0.336,
"step": 16600
},
{
"epoch": 1.91,
"grad_norm": 0.3406757116317749,
"learning_rate": 0.00010432107556897486,
"loss": 1.5394,
"step": 16800
},
{
"epoch": 1.91,
"eval_bertscore": 0.7345961332321167,
"eval_loss": 1.7324028015136719,
"eval_rouge1": 0.6408293615351552,
"eval_rouge2": 0.3520120690778129,
"eval_rougeL": 0.5145218014745592,
"eval_rougeLsum": 0.6297802607384266,
"eval_runtime": 15.1044,
"eval_samples_per_second": 0.662,
"eval_steps_per_second": 0.331,
"step": 16800
},
{
"epoch": 1.94,
"grad_norm": 0.3417683243751526,
"learning_rate": 0.00010318170165494061,
"loss": 1.526,
"step": 17000
},
{
"epoch": 1.94,
"eval_bertscore": 0.735752522945404,
"eval_loss": 1.7288110256195068,
"eval_rouge1": 0.641158513352794,
"eval_rouge2": 0.3544166440855814,
"eval_rougeL": 0.5215201980495414,
"eval_rougeLsum": 0.630550065494593,
"eval_runtime": 15.0797,
"eval_samples_per_second": 0.663,
"eval_steps_per_second": 0.332,
"step": 17000
},
{
"epoch": 1.96,
"grad_norm": 0.3256611227989197,
"learning_rate": 0.00010204232774090639,
"loss": 1.5484,
"step": 17200
},
{
"epoch": 1.96,
"eval_bertscore": 0.7356327772140503,
"eval_loss": 1.7305186986923218,
"eval_rouge1": 0.6400269226515611,
"eval_rouge2": 0.3502884634173268,
"eval_rougeL": 0.517312321281175,
"eval_rougeLsum": 0.6284556997614409,
"eval_runtime": 15.4097,
"eval_samples_per_second": 0.649,
"eval_steps_per_second": 0.324,
"step": 17200
},
{
"epoch": 1.98,
"grad_norm": 0.4035187363624573,
"learning_rate": 0.00010090295382687213,
"loss": 1.5261,
"step": 17400
},
{
"epoch": 1.98,
"eval_bertscore": 0.7339992523193359,
"eval_loss": 1.7282793521881104,
"eval_rouge1": 0.6335770390416183,
"eval_rouge2": 0.34592404578075897,
"eval_rougeL": 0.5109045259792113,
"eval_rougeLsum": 0.6218413683710426,
"eval_runtime": 15.1959,
"eval_samples_per_second": 0.658,
"eval_steps_per_second": 0.329,
"step": 17400
},
{
"epoch": 2.0,
"grad_norm": 0.34987062215805054,
"learning_rate": 9.97635799128379e-05,
"loss": 1.5199,
"step": 17600
},
{
"epoch": 2.0,
"eval_bertscore": 0.7326329946517944,
"eval_loss": 1.7544715404510498,
"eval_rouge1": 0.6451558045750205,
"eval_rouge2": 0.35565806935653943,
"eval_rougeL": 0.5217034865840529,
"eval_rougeLsum": 0.6329869715356753,
"eval_runtime": 15.0351,
"eval_samples_per_second": 0.665,
"eval_steps_per_second": 0.333,
"step": 17600
},
{
"epoch": 2.03,
"grad_norm": 0.37184038758277893,
"learning_rate": 9.862420599880366e-05,
"loss": 1.41,
"step": 17800
},
{
"epoch": 2.03,
"eval_bertscore": 0.7315141558647156,
"eval_loss": 1.7585878372192383,
"eval_rouge1": 0.6469319193583706,
"eval_rouge2": 0.3514447211469598,
"eval_rougeL": 0.524755857688278,
"eval_rougeLsum": 0.6350164781858667,
"eval_runtime": 14.9583,
"eval_samples_per_second": 0.669,
"eval_steps_per_second": 0.334,
"step": 17800
},
{
"epoch": 2.05,
"grad_norm": 0.3812776803970337,
"learning_rate": 9.748483208476943e-05,
"loss": 1.4132,
"step": 18000
},
{
"epoch": 2.05,
"eval_bertscore": 0.7335561513900757,
"eval_loss": 1.764611840248108,
"eval_rouge1": 0.6381916780473581,
"eval_rouge2": 0.3482510604092539,
"eval_rougeL": 0.5162105225823392,
"eval_rougeLsum": 0.627150245441782,
"eval_runtime": 15.8515,
"eval_samples_per_second": 0.631,
"eval_steps_per_second": 0.315,
"step": 18000
},
{
"epoch": 2.07,
"grad_norm": 0.45525220036506653,
"learning_rate": 9.634545817073518e-05,
"loss": 1.4,
"step": 18200
},
{
"epoch": 2.07,
"eval_bertscore": 0.73627769947052,
"eval_loss": 1.7585163116455078,
"eval_rouge1": 0.6670097658027134,
"eval_rouge2": 0.3658295359911405,
"eval_rougeL": 0.5429667657900548,
"eval_rougeLsum": 0.6543501745791419,
"eval_runtime": 15.0301,
"eval_samples_per_second": 0.665,
"eval_steps_per_second": 0.333,
"step": 18200
},
{
"epoch": 2.1,
"grad_norm": 0.37322184443473816,
"learning_rate": 9.520608425670095e-05,
"loss": 1.4293,
"step": 18400
},
{
"epoch": 2.1,
"eval_bertscore": 0.730435848236084,
"eval_loss": 1.764052391052246,
"eval_rouge1": 0.6640215078213034,
"eval_rouge2": 0.3625932287322054,
"eval_rougeL": 0.5379978391335138,
"eval_rougeLsum": 0.6542054656293199,
"eval_runtime": 15.0762,
"eval_samples_per_second": 0.663,
"eval_steps_per_second": 0.332,
"step": 18400
},
{
"epoch": 2.12,
"grad_norm": 0.4260891079902649,
"learning_rate": 9.40667103426667e-05,
"loss": 1.4077,
"step": 18600
},
{
"epoch": 2.12,
"eval_bertscore": 0.7309869527816772,
"eval_loss": 1.762108564376831,
"eval_rouge1": 0.6571171081737958,
"eval_rouge2": 0.35780421333141865,
"eval_rougeL": 0.5320129270967632,
"eval_rougeLsum": 0.64587787409523,
"eval_runtime": 14.9004,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.336,
"step": 18600
},
{
"epoch": 2.14,
"grad_norm": 0.39479926228523254,
"learning_rate": 9.292733642863247e-05,
"loss": 1.4165,
"step": 18800
},
{
"epoch": 2.14,
"eval_bertscore": 0.7324444651603699,
"eval_loss": 1.7607113122940063,
"eval_rouge1": 0.6628398862884018,
"eval_rouge2": 0.3627259806721216,
"eval_rougeL": 0.5366106483832656,
"eval_rougeLsum": 0.6528364858807157,
"eval_runtime": 15.5766,
"eval_samples_per_second": 0.642,
"eval_steps_per_second": 0.321,
"step": 18800
},
{
"epoch": 2.16,
"grad_norm": 0.39267703890800476,
"learning_rate": 9.178796251459824e-05,
"loss": 1.4123,
"step": 19000
},
{
"epoch": 2.16,
"eval_bertscore": 0.7298994064331055,
"eval_loss": 1.7668545246124268,
"eval_rouge1": 0.6490850022857569,
"eval_rouge2": 0.3532323419511264,
"eval_rougeL": 0.5212823000193295,
"eval_rougeLsum": 0.636442724466695,
"eval_runtime": 14.9094,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.335,
"step": 19000
},
{
"epoch": 2.19,
"grad_norm": 0.38221287727355957,
"learning_rate": 9.0648588600564e-05,
"loss": 1.401,
"step": 19200
},
{
"epoch": 2.19,
"eval_bertscore": 0.7316875457763672,
"eval_loss": 1.764147400856018,
"eval_rouge1": 0.6490326710625849,
"eval_rouge2": 0.3510351037900723,
"eval_rougeL": 0.5239165028795836,
"eval_rougeLsum": 0.6373687316421427,
"eval_runtime": 15.1192,
"eval_samples_per_second": 0.661,
"eval_steps_per_second": 0.331,
"step": 19200
},
{
"epoch": 2.21,
"grad_norm": 0.3653150200843811,
"learning_rate": 8.950921468652976e-05,
"loss": 1.4109,
"step": 19400
},
{
"epoch": 2.21,
"eval_bertscore": 0.7348155975341797,
"eval_loss": 1.7640550136566162,
"eval_rouge1": 0.6462152873276823,
"eval_rouge2": 0.3483599145461069,
"eval_rougeL": 0.5193372430687719,
"eval_rougeLsum": 0.6334254357511564,
"eval_runtime": 14.9291,
"eval_samples_per_second": 0.67,
"eval_steps_per_second": 0.335,
"step": 19400
},
{
"epoch": 2.23,
"grad_norm": 0.38049009442329407,
"learning_rate": 8.836984077249551e-05,
"loss": 1.4189,
"step": 19600
},
{
"epoch": 2.23,
"eval_bertscore": 0.7357938885688782,
"eval_loss": 1.7696326971054077,
"eval_rouge1": 0.6377276221057538,
"eval_rouge2": 0.3455397190390045,
"eval_rougeL": 0.5118069428064842,
"eval_rougeLsum": 0.6264501633078481,
"eval_runtime": 14.8653,
"eval_samples_per_second": 0.673,
"eval_steps_per_second": 0.336,
"step": 19600
},
{
"epoch": 2.26,
"grad_norm": 0.42111098766326904,
"learning_rate": 8.723046685846128e-05,
"loss": 1.4152,
"step": 19800
},
{
"epoch": 2.26,
"eval_bertscore": 0.7339056134223938,
"eval_loss": 1.7658218145370483,
"eval_rouge1": 0.6494820372695989,
"eval_rouge2": 0.34691658128805236,
"eval_rougeL": 0.5193228965163086,
"eval_rougeLsum": 0.6365347065687565,
"eval_runtime": 15.3562,
"eval_samples_per_second": 0.651,
"eval_steps_per_second": 0.326,
"step": 19800
},
{
"epoch": 2.28,
"grad_norm": 0.4452258050441742,
"learning_rate": 8.609109294442704e-05,
"loss": 1.4101,
"step": 20000
},
{
"epoch": 2.28,
"eval_bertscore": 0.7296434640884399,
"eval_loss": 1.7714240550994873,
"eval_rouge1": 0.6565600824405751,
"eval_rouge2": 0.3533618655201594,
"eval_rougeL": 0.5263318202066467,
"eval_rougeLsum": 0.6444964824298407,
"eval_runtime": 14.8578,
"eval_samples_per_second": 0.673,
"eval_steps_per_second": 0.337,
"step": 20000
},
{
"epoch": 2.3,
"grad_norm": 0.4030967652797699,
"learning_rate": 8.495171903039281e-05,
"loss": 1.4049,
"step": 20200
},
{
"epoch": 2.3,
"eval_bertscore": 0.7307097315788269,
"eval_loss": 1.774444580078125,
"eval_rouge1": 0.6517204836155526,
"eval_rouge2": 0.3521339653276223,
"eval_rougeL": 0.5223211728244184,
"eval_rougeLsum": 0.6398710531932736,
"eval_runtime": 15.8543,
"eval_samples_per_second": 0.631,
"eval_steps_per_second": 0.315,
"step": 20200
},
{
"epoch": 2.32,
"grad_norm": 0.33409813046455383,
"learning_rate": 8.381234511635858e-05,
"loss": 1.4243,
"step": 20400
},
{
"epoch": 2.32,
"eval_bertscore": 0.7312101721763611,
"eval_loss": 1.7654094696044922,
"eval_rouge1": 0.6607249126293291,
"eval_rouge2": 0.3545993249716188,
"eval_rougeL": 0.5320161007986739,
"eval_rougeLsum": 0.6503315335963733,
"eval_runtime": 14.8739,
"eval_samples_per_second": 0.672,
"eval_steps_per_second": 0.336,
"step": 20400
},
{
"epoch": 2.35,
"grad_norm": 0.4044789671897888,
"learning_rate": 8.267297120232433e-05,
"loss": 1.413,
"step": 20600
},
{
"epoch": 2.35,
"eval_bertscore": 0.7342169880867004,
"eval_loss": 1.769879937171936,
"eval_rouge1": 0.6442777880355144,
"eval_rouge2": 0.35006080708477183,
"eval_rougeL": 0.5218799478770955,
"eval_rougeLsum": 0.6332700294558067,
"eval_runtime": 14.9089,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.335,
"step": 20600
},
{
"epoch": 2.37,
"grad_norm": 0.39801183342933655,
"learning_rate": 8.153359728829008e-05,
"loss": 1.4177,
"step": 20800
},
{
"epoch": 2.37,
"eval_bertscore": 0.7343758344650269,
"eval_loss": 1.7737929821014404,
"eval_rouge1": 0.6495678172205896,
"eval_rouge2": 0.3505195734345703,
"eval_rougeL": 0.5263025592812188,
"eval_rougeLsum": 0.6390057749428748,
"eval_runtime": 15.2148,
"eval_samples_per_second": 0.657,
"eval_steps_per_second": 0.329,
"step": 20800
},
{
"epoch": 2.39,
"grad_norm": 0.36868759989738464,
"learning_rate": 8.039422337425585e-05,
"loss": 1.421,
"step": 21000
},
{
"epoch": 2.39,
"eval_bertscore": 0.7333502173423767,
"eval_loss": 1.7708820104599,
"eval_rouge1": 0.656319412860679,
"eval_rouge2": 0.3557406341135577,
"eval_rougeL": 0.5293456110466322,
"eval_rougeLsum": 0.6421819358163285,
"eval_runtime": 14.9091,
"eval_samples_per_second": 0.671,
"eval_steps_per_second": 0.335,
"step": 21000
},
{
"epoch": 2.41,
"grad_norm": 0.46111443638801575,
"learning_rate": 7.925484946022162e-05,
"loss": 1.4102,
"step": 21200
},
{
"epoch": 2.41,
"eval_bertscore": 0.736262321472168,
"eval_loss": 1.768972635269165,
"eval_rouge1": 0.6582574071278393,
"eval_rouge2": 0.3557625250443591,
"eval_rougeL": 0.5322500342922363,
"eval_rougeLsum": 0.646623827844921,
"eval_runtime": 15.4088,
"eval_samples_per_second": 0.649,
"eval_steps_per_second": 0.324,
"step": 21200
},
{
"epoch": 2.44,
"grad_norm": 0.41794517636299133,
"learning_rate": 7.811547554618738e-05,
"loss": 1.4231,
"step": 21400
},
{
"epoch": 2.44,
"eval_bertscore": 0.7349900603294373,
"eval_loss": 1.7673609256744385,
"eval_rouge1": 0.6599777278993147,
"eval_rouge2": 0.35744569380532043,
"eval_rougeL": 0.5359850821835463,
"eval_rougeLsum": 0.6469206354455653,
"eval_runtime": 14.8837,
"eval_samples_per_second": 0.672,
"eval_steps_per_second": 0.336,
"step": 21400
},
{
"epoch": 2.46,
"grad_norm": 0.3874039351940155,
"learning_rate": 7.697610163215314e-05,
"loss": 1.4158,
"step": 21600
},
{
"epoch": 2.46,
"eval_bertscore": 0.7362676858901978,
"eval_loss": 1.764347791671753,
"eval_rouge1": 0.6576168971663054,
"eval_rouge2": 0.36010190798950537,
"eval_rougeL": 0.5365592740576962,
"eval_rougeLsum": 0.6455601225938818,
"eval_runtime": 15.4178,
"eval_samples_per_second": 0.649,
"eval_steps_per_second": 0.324,
"step": 21600
},
{
"epoch": 2.48,
"grad_norm": 0.4013253450393677,
"learning_rate": 7.583672771811889e-05,
"loss": 1.418,
"step": 21800
},
{
"epoch": 2.48,
"eval_bertscore": 0.7303592562675476,
"eval_loss": 1.765144944190979,
"eval_rouge1": 0.6610480012685163,
"eval_rouge2": 0.36479831105715255,
"eval_rougeL": 0.5375415216439376,
"eval_rougeLsum": 0.6504955320897916,
"eval_runtime": 15.0677,
"eval_samples_per_second": 0.664,
"eval_steps_per_second": 0.332,
"step": 21800
},
{
"epoch": 2.51,
"grad_norm": 0.4189004898071289,
"learning_rate": 7.469735380408466e-05,
"loss": 1.4199,
"step": 22000
},
{
"epoch": 2.51,
"eval_bertscore": 0.7319179773330688,
"eval_loss": 1.7685811519622803,
"eval_rouge1": 0.6589314825298751,
"eval_rouge2": 0.36092809773515727,
"eval_rougeL": 0.5359034256928837,
"eval_rougeLsum": 0.647695652924998,
"eval_runtime": 15.0325,
"eval_samples_per_second": 0.665,
"eval_steps_per_second": 0.333,
"step": 22000
},
{
"epoch": 2.53,
"grad_norm": 0.39296436309814453,
"learning_rate": 7.355797989005042e-05,
"loss": 1.4353,
"step": 22200
},
{
"epoch": 2.53,
"eval_bertscore": 0.734102725982666,
"eval_loss": 1.7720457315444946,
"eval_rouge1": 0.652136441919871,
"eval_rouge2": 0.35394856883334874,
"eval_rougeL": 0.5257845140699575,
"eval_rougeLsum": 0.6411232244792167,
"eval_runtime": 14.9943,
"eval_samples_per_second": 0.667,
"eval_steps_per_second": 0.333,
"step": 22200
},
{
"epoch": 2.55,
"grad_norm": 0.3997296392917633,
"learning_rate": 7.241860597601619e-05,
"loss": 1.4224,
"step": 22400
},
{
"epoch": 2.55,
"eval_bertscore": 0.7339878082275391,
"eval_loss": 1.7666336297988892,
"eval_rouge1": 0.6537340121878514,
"eval_rouge2": 0.3570961026063757,
"eval_rougeL": 0.529937130767685,
"eval_rougeLsum": 0.6435060914147177,
"eval_runtime": 15.0439,
"eval_samples_per_second": 0.665,
"eval_steps_per_second": 0.332,
"step": 22400
},
{
"epoch": 2.57,
"grad_norm": 0.45447298884391785,
"learning_rate": 7.127923206198196e-05,
"loss": 1.4195,
"step": 22600
},
{
"epoch": 2.57,
"eval_bertscore": 0.7328049540519714,
"eval_loss": 1.767970085144043,
"eval_rouge1": 0.6525615870662755,
"eval_rouge2": 0.3548658659692201,
"eval_rougeL": 0.5278612681579985,
"eval_rougeLsum": 0.6426018669254849,
"eval_runtime": 14.8509,
"eval_samples_per_second": 0.673,
"eval_steps_per_second": 0.337,
"step": 22600
},
{
"epoch": 2.6,
"grad_norm": 0.37068402767181396,
"learning_rate": 7.01398581479477e-05,
"loss": 1.4174,
"step": 22800
},
{
"epoch": 2.6,
"eval_bertscore": 0.7338019609451294,
"eval_loss": 1.763349175453186,
"eval_rouge1": 0.6536530437395975,
"eval_rouge2": 0.3564778360043106,
"eval_rougeL": 0.5285382022264695,
"eval_rougeLsum": 0.6425723229746058,
"eval_runtime": 14.8293,
"eval_samples_per_second": 0.674,
"eval_steps_per_second": 0.337,
"step": 22800
},
{
"epoch": 2.62,
"grad_norm": 0.35103845596313477,
"learning_rate": 6.900048423391346e-05,
"loss": 1.4176,
"step": 23000
},
{
"epoch": 2.62,
"eval_bertscore": 0.7325159311294556,
"eval_loss": 1.7628978490829468,
"eval_rouge1": 0.6623030759220351,
"eval_rouge2": 0.3604109991839185,
"eval_rougeL": 0.5322677462077166,
"eval_rougeLsum": 0.6516312160764892,
"eval_runtime": 14.923,
"eval_samples_per_second": 0.67,
"eval_steps_per_second": 0.335,
"step": 23000
},
{
"epoch": 2.64,
"grad_norm": 0.39424487948417664,
"learning_rate": 6.786111031987923e-05,
"loss": 1.4141,
"step": 23200
},
{
"epoch": 2.64,
"eval_bertscore": 0.7374362945556641,
"eval_loss": 1.7650716304779053,
"eval_rouge1": 0.6574628250156043,
"eval_rouge2": 0.36049809448726045,
"eval_rougeL": 0.5312753147070929,
"eval_rougeLsum": 0.6452805224085838,
"eval_runtime": 14.8888,
"eval_samples_per_second": 0.672,
"eval_steps_per_second": 0.336,
"step": 23200
}
],
"logging_steps": 200,
"max_steps": 35112,
"num_input_tokens_seen": 0,
"num_train_epochs": 4,
"save_steps": 800,
"total_flos": 2.349948251199025e+18,
"train_batch_size": 2,
"trial_name": null,
"trial_params": null
}