Text Generation
Transformers
PyTorch
English
llama
conversational
text-generation-inference
Inference Endpoints
File size: 4,076 Bytes
a34ae29
 
 
 
 
 
 
 
 
bc92ec2
a34ae29
 
 
 
 
 
 
 
 
 
 
 
 
66b7936
a34ae29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b7936
a34ae29
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
model-index:
- name: tulu-v2.5-dpo-13b-alpacafarm-human-pref
  results: []
datasets:
- allenai/tulu-2.5-preference-data
- allenai/tulu-v2-sft-mixture
language:
- en
base_model: allenai/tulu-2-13b
license: apache-2.0
---
<center>
<img src="https://huggingface.co./datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/>
</center>

# Model Card for Tulu V2.5 DPO 13B - AlpacaFarm Human Preferences

Tulu is a series of language models that are trained to act as helpful assistants.
Tulu V2.5 is a series of models trained using DPO and PPO starting from the [Tulu 2 suite](https://huggingface.co./collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).
This model is trained on the alpacafarm human preferences dataset using DPO.

For more details, read the paper:
[Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).


## .Model description

- **Model type:** One model belonging to a suite of RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
- **Language(s) (NLP):** English
- **License:** Apache 2.0.
- **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co./meta-llama/Llama-2-13b-hf)

### Model Sources

- **Repository:** https://github.com/allenai/open-instruct
- **Dataset:** Data used to train this model can be found [here](https://huggingface.co./datasets/allenai/tulu-2.5-preference-data) - specifically the `alpaca_farm_human_pref` split.
- **Model Family:** The collection of related models can be found [here](https://huggingface.co./collections/allenai/tulu-v25-suite-66676520fd578080e126f618).

## Input Format

The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```

For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
We have included a [chat template](https://huggingface.co./docs/transformers/main/en/chat_templating) in the tokenizer implementing this template.

## Intended uses & limitations

The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co./datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs. 
We then further aligned the model with a [Jax DPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_dpo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above.

## Bias, Risks, and Limitations

The Tulu models have not been aligned to generate safe completions within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). 
It is also unknown what the size and composition of the corpus was used to train the base Llama 2 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co./tiiuae/falcon-180B#training-data) for an example of this.


### Training hyperparameters

The following hyperparameters were used during DPO training:
- learning_rate: 5e-07
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

## Citation

If you find Tulu 2.5 is useful in your work, please cite it with:

```
@misc{ivison2024unpacking,
      title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}}, 
      author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
      year={2024},
      eprint={2406.09279},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```