File size: 9,805 Bytes
cd2b7c5
 
 
 
 
 
 
 
f91cb3c
cd2b7c5
f91cb3c
cd2b7c5
f91cb3c
 
 
 
 
 
27d01f9
 
 
 
 
cd2b7c5
680630c
c82cd4f
680630c
 
 
 
 
 
 
 
 
 
f91cb3c
680630c
f91cb3c
680630c
f91cb3c
680630c
e72663a
cd2b7c5
27d01f9
cd2b7c5
 
27d01f9
cd2b7c5
eefacd8
cd2b7c5
 
 
 
27d01f9
cd2b7c5
6401e6b
018f886
cd2b7c5
 
c8176e1
f6695a8
 
 
 
c82cd4f
c8176e1
f6695a8
 
 
 
c8176e1
f6695a8
 
6401e6b
f6695a8
 
 
 
 
 
 
 
 
 
db1ca89
f6695a8
db1ca89
f6695a8
 
 
c82cd4f
e1058a7
c82cd4f
f6695a8
 
 
 
 
 
 
db1ca89
f6695a8
c8176e1
 
db1ca89
 
 
c8176e1
f6695a8
 
27d01f9
 
f6695a8
 
6401e6b
f6695a8
 
27d01f9
f6695a8
 
018f886
f6695a8
 
 
 
 
 
 
 
 
 
 
 
 
 
db1ca89
f6695a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d105d
 
 
c82cd4f
a9d105d
f6695a8
c82cd4f
f6695a8
 
 
 
026fcf2
f6695a8
 
026fcf2
f6695a8
026fcf2
f6695a8
 
cd2b7c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
tags:
- adapter-transformers
- bert
datasets:
- allenai/scirepeval
---

## SPECTER2

<!-- Provide a quick summary of what the model is/does. -->

SPECTER2 is a family of models that succeeds [SPECTER](https://huggingface.co./allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co./models?search=allenai/specter-2_).
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.

**Note:For general embedding purposes, please use [allenai/specter2](https://huggingface.co./allenai/specter2).**

**To get the best performance on a downstream task type please load the associated adapter () with the base model as in the example below.**

**Dec 2023 Update:**

Model usage updated to be compatible with latest versions of transformers and adapters (newly released update to adapter-transformers) libraries.


**Aug 2023 Update:**
1. **The SPECTER2 Base and proximity adapter models have been renamed in Hugging Face based upon usage patterns as follows:**

|Old Name|New Name|
|--|--|
|allenai/specter2|[allenai/specter2_base](https://huggingface.co./allenai/specter2_base)|
|allenai/specter2_proximity|[allenai/specter2](https://huggingface.co./allenai/specter2)|

2. **We have a parallel version (termed [aug2023refresh](https://huggingface.co./allenai/specter2_aug2023refresh)) where the base transformer encoder version is pre-trained on a collection of newer papers (published after 2018).
   However, for benchmarking purposes, please continue using the current version.**


# Adapter `allenai/specter2_regression` for allenai/specter2_base

An [adapter](https://adapterhub.ml) for the [`allenai/specter2_base`](https://huggingface.co./allenai/specter2_base) model that was trained on the [allenai/scirepeval](https://huggingface.co./datasets/allenai/scirepeval/) dataset.

This adapter was created for usage with the **[adapter-transformers](https://github.com/adapter-hub/adapters)** library.

## Adapter Usage

First, install `adapters`:

```
pip install -U adapters
```
_Note: adapters is built as an add on to transformers and acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml)_

Now, the adapter can be loaded and activated like this:

```python
from adapters import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("allenai/specter2_base")
adapter_name = model.load_adapter("allenai/specter2_regression", source="hf", set_active=True)
```


# Model Details

## Model Description

SPECTER2 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co./datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
Post that it is trained with additionally attached task format specific adapter modules on all the [SciRepEval](https://huggingface.co./datasets/allenai/scirepeval) training tasks.

Task Formats trained on:
- Classification
- Regression
- Proximity (Retrieval)
- Adhoc Search

**This is the regression specific adapter. For generating embeddings which can be used as input to downstream regression models like SVRs to generate a continuous value as the result.**

  
It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.



- **Developed by:** Amanpreet Singh, Mike D'Arcy, Arman Cohan, Doug Downey, Sergey Feldman
- **Shared by :** Allen AI
- **Model type:** bert-base-uncased + adapters
- **License:** Apache 2.0
- **Finetuned from model:** [allenai/scibert](https://huggingface.co./allenai/scibert_scivocab_uncased).

## Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** [https://github.com/allenai/SPECTER2](https://github.com/allenai/SPECTER2)
- **Paper:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
- **Demo:** [Usage](https://github.com/allenai/SPECTER2/blob/main/README.md)

# Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

## Direct Use

|Model|Name and HF link|Description|
|--|--|--|
|Proximity*|[allenai/specter2](https://huggingface.co./allenai/specter2)|Encode papers as queries and candidates eg. Link Prediction, Nearest Neighbor Search|
|Adhoc Query|[allenai/specter2_adhoc_query](https://huggingface.co./allenai/specter2_adhoc_query)|Encode short raw text queries for search tasks. (Candidate papers can be encoded with the proximity adapter)|
|Classification|[allenai/specter2_classification](https://huggingface.co./allenai/specter2_classification)|Encode papers to feed into linear classifiers as features|
|Regression|[allenai/specter2_regression](https://huggingface.co./allenai/specter2_regression)|Encode papers to feed into linear regressors as features|

*Proximity model should suffice for downstream task types not mentioned above

```python
from transformers import AutoTokenizer
from adapters import AutoAdapterModel

# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_base')

#load base model
model = AutoAdapterModel.from_pretrained('allenai/specter2_base')

#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
model.load_adapter("allenai/specter2_regression", source="hf", load_as="regression", set_active=True)

papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
          {'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]

# concatenate title and abstract
text_batch = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = self.tokenizer(text_batch, padding=True, truncation=True,
                                   return_tensors="pt", return_token_type_ids=False, max_length=512)
output = model(**inputs)
# take the first token in the batch as the embedding
embeddings = output.last_hidden_state[:, 0, :]
```

## Downstream Use

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

For evaluation and downstream usage, please refer to [https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md](https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md).

# Training Details

## Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

The base model is trained on citation links between papers and the adapters are trained on 8 large scale tasks across the four formats.
All the data is a part of SciRepEval benchmark and is available [here](https://huggingface.co./datasets/allenai/scirepeval).

The citation link are triplets in the form 

```json
{"query": {"title": ..., "abstract": ...}, "pos": {"title": ..., "abstract": ...}, "neg": {"title": ..., "abstract": ...}}
```

consisting of a query paper, a positive citation and a negative which can be from the same/different field of study as the query or citation of a citation.

## Training Procedure 

Please refer to the [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677).


### Training Hyperparameters


The model is trained in two stages using [SciRepEval](https://github.com/allenai/scirepeval/blob/main/training/TRAINING.md):
- Base Model: First a base model is trained on the above citation triplets.
``` batch size = 1024, max input length = 512, learning rate = 2e-5, epochs = 2 warmup steps = 10% fp16```
- Adapters: Thereafter, task format specific adapters are trained on the SciRepEval training tasks, where 600K triplets are sampled from above and added to the training data as well.
``` batch size = 256, max input length = 512, learning rate = 1e-4, epochs = 6 warmup = 1000 steps fp16```


# Evaluation

We evaluate the model on [SciRepEval](https://github.com/allenai/scirepeval), a large scale eval benchmark for scientific embedding tasks which which has [SciDocs] as a subset.
We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedic/mdcr), a large scale citation recommendation benchmark.

|Model|SciRepEval In-Train|SciRepEval Out-of-Train|SciRepEval Avg|MDCR(MAP, Recall@5)|
|--|--|--|--|--|
|[BM-25](https://api.semanticscholar.org/CorpusID:252199740)|n/a|n/a|n/a|(33.7, 28.5)|
|[SPECTER](https://huggingface.co./allenai/specter)|54.7|72.0|67.5|(30.6, 25.5)|
|[SciNCL](https://huggingface.co./malteos/scincl)|55.6|73.4|68.8|(32.6, 27.3)|
|[SciRepEval-Adapters](https://huggingface.co./models?search=scirepeval)|61.9|73.8|70.7|(35.3, 29.6)|
|[SPECTER2 Base](allenai/specter2_base)|56.3|73.6|69.1|(38.0, 32.4)|
|[SPECTER2-Adapters](https://huggingface.co./models?search=allenai/specter-2)|**62.3**|**74.1**|**71.1**|**(38.4, 33.0)**|

Please cite the following works if you end up using SPECTER2:

```
[SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
```bibtex
@inproceedings{Singh2022SciRepEvalAM,
  title={SciRepEval: A Multi-Format Benchmark for Scientific Document Representations},
  author={Amanpreet Singh and Mike D'Arcy and Arman Cohan and Doug Downey and Sergey Feldman},
  booktitle={Conference on Empirical Methods in Natural Language Processing},
  year={2022},
  url={https://api.semanticscholar.org/CorpusID:254018137}
}
```