File size: 9,805 Bytes
cd2b7c5 f91cb3c cd2b7c5 f91cb3c cd2b7c5 f91cb3c 27d01f9 cd2b7c5 680630c c82cd4f 680630c f91cb3c 680630c f91cb3c 680630c f91cb3c 680630c e72663a cd2b7c5 27d01f9 cd2b7c5 27d01f9 cd2b7c5 eefacd8 cd2b7c5 27d01f9 cd2b7c5 6401e6b 018f886 cd2b7c5 c8176e1 f6695a8 c82cd4f c8176e1 f6695a8 c8176e1 f6695a8 6401e6b f6695a8 db1ca89 f6695a8 db1ca89 f6695a8 c82cd4f e1058a7 c82cd4f f6695a8 db1ca89 f6695a8 c8176e1 db1ca89 c8176e1 f6695a8 27d01f9 f6695a8 6401e6b f6695a8 27d01f9 f6695a8 018f886 f6695a8 db1ca89 f6695a8 a9d105d c82cd4f a9d105d f6695a8 c82cd4f f6695a8 026fcf2 f6695a8 026fcf2 f6695a8 026fcf2 f6695a8 cd2b7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
tags:
- adapter-transformers
- bert
datasets:
- allenai/scirepeval
---
## SPECTER2
<!-- Provide a quick summary of what the model is/does. -->
SPECTER2 is a family of models that succeeds [SPECTER](https://huggingface.co./allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co./models?search=allenai/specter-2_).
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
**Note:For general embedding purposes, please use [allenai/specter2](https://huggingface.co./allenai/specter2).**
**To get the best performance on a downstream task type please load the associated adapter () with the base model as in the example below.**
**Dec 2023 Update:**
Model usage updated to be compatible with latest versions of transformers and adapters (newly released update to adapter-transformers) libraries.
**Aug 2023 Update:**
1. **The SPECTER2 Base and proximity adapter models have been renamed in Hugging Face based upon usage patterns as follows:**
|Old Name|New Name|
|--|--|
|allenai/specter2|[allenai/specter2_base](https://huggingface.co./allenai/specter2_base)|
|allenai/specter2_proximity|[allenai/specter2](https://huggingface.co./allenai/specter2)|
2. **We have a parallel version (termed [aug2023refresh](https://huggingface.co./allenai/specter2_aug2023refresh)) where the base transformer encoder version is pre-trained on a collection of newer papers (published after 2018).
However, for benchmarking purposes, please continue using the current version.**
# Adapter `allenai/specter2_regression` for allenai/specter2_base
An [adapter](https://adapterhub.ml) for the [`allenai/specter2_base`](https://huggingface.co./allenai/specter2_base) model that was trained on the [allenai/scirepeval](https://huggingface.co./datasets/allenai/scirepeval/) dataset.
This adapter was created for usage with the **[adapter-transformers](https://github.com/adapter-hub/adapters)** library.
## Adapter Usage
First, install `adapters`:
```
pip install -U adapters
```
_Note: adapters is built as an add on to transformers and acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml)_
Now, the adapter can be loaded and activated like this:
```python
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("allenai/specter2_base")
adapter_name = model.load_adapter("allenai/specter2_regression", source="hf", set_active=True)
```
# Model Details
## Model Description
SPECTER2 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co./datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
Post that it is trained with additionally attached task format specific adapter modules on all the [SciRepEval](https://huggingface.co./datasets/allenai/scirepeval) training tasks.
Task Formats trained on:
- Classification
- Regression
- Proximity (Retrieval)
- Adhoc Search
**This is the regression specific adapter. For generating embeddings which can be used as input to downstream regression models like SVRs to generate a continuous value as the result.**
It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.
- **Developed by:** Amanpreet Singh, Mike D'Arcy, Arman Cohan, Doug Downey, Sergey Feldman
- **Shared by :** Allen AI
- **Model type:** bert-base-uncased + adapters
- **License:** Apache 2.0
- **Finetuned from model:** [allenai/scibert](https://huggingface.co./allenai/scibert_scivocab_uncased).
## Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/allenai/SPECTER2](https://github.com/allenai/SPECTER2)
- **Paper:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
- **Demo:** [Usage](https://github.com/allenai/SPECTER2/blob/main/README.md)
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
|Model|Name and HF link|Description|
|--|--|--|
|Proximity*|[allenai/specter2](https://huggingface.co./allenai/specter2)|Encode papers as queries and candidates eg. Link Prediction, Nearest Neighbor Search|
|Adhoc Query|[allenai/specter2_adhoc_query](https://huggingface.co./allenai/specter2_adhoc_query)|Encode short raw text queries for search tasks. (Candidate papers can be encoded with the proximity adapter)|
|Classification|[allenai/specter2_classification](https://huggingface.co./allenai/specter2_classification)|Encode papers to feed into linear classifiers as features|
|Regression|[allenai/specter2_regression](https://huggingface.co./allenai/specter2_regression)|Encode papers to feed into linear regressors as features|
*Proximity model should suffice for downstream task types not mentioned above
```python
from transformers import AutoTokenizer
from adapters import AutoAdapterModel
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_base')
#load base model
model = AutoAdapterModel.from_pretrained('allenai/specter2_base')
#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
model.load_adapter("allenai/specter2_regression", source="hf", load_as="regression", set_active=True)
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
# concatenate title and abstract
text_batch = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = self.tokenizer(text_batch, padding=True, truncation=True,
return_tensors="pt", return_token_type_ids=False, max_length=512)
output = model(**inputs)
# take the first token in the batch as the embedding
embeddings = output.last_hidden_state[:, 0, :]
```
## Downstream Use
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
For evaluation and downstream usage, please refer to [https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md](https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md).
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The base model is trained on citation links between papers and the adapters are trained on 8 large scale tasks across the four formats.
All the data is a part of SciRepEval benchmark and is available [here](https://huggingface.co./datasets/allenai/scirepeval).
The citation link are triplets in the form
```json
{"query": {"title": ..., "abstract": ...}, "pos": {"title": ..., "abstract": ...}, "neg": {"title": ..., "abstract": ...}}
```
consisting of a query paper, a positive citation and a negative which can be from the same/different field of study as the query or citation of a citation.
## Training Procedure
Please refer to the [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677).
### Training Hyperparameters
The model is trained in two stages using [SciRepEval](https://github.com/allenai/scirepeval/blob/main/training/TRAINING.md):
- Base Model: First a base model is trained on the above citation triplets.
``` batch size = 1024, max input length = 512, learning rate = 2e-5, epochs = 2 warmup steps = 10% fp16```
- Adapters: Thereafter, task format specific adapters are trained on the SciRepEval training tasks, where 600K triplets are sampled from above and added to the training data as well.
``` batch size = 256, max input length = 512, learning rate = 1e-4, epochs = 6 warmup = 1000 steps fp16```
# Evaluation
We evaluate the model on [SciRepEval](https://github.com/allenai/scirepeval), a large scale eval benchmark for scientific embedding tasks which which has [SciDocs] as a subset.
We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedic/mdcr), a large scale citation recommendation benchmark.
|Model|SciRepEval In-Train|SciRepEval Out-of-Train|SciRepEval Avg|MDCR(MAP, Recall@5)|
|--|--|--|--|--|
|[BM-25](https://api.semanticscholar.org/CorpusID:252199740)|n/a|n/a|n/a|(33.7, 28.5)|
|[SPECTER](https://huggingface.co./allenai/specter)|54.7|72.0|67.5|(30.6, 25.5)|
|[SciNCL](https://huggingface.co./malteos/scincl)|55.6|73.4|68.8|(32.6, 27.3)|
|[SciRepEval-Adapters](https://huggingface.co./models?search=scirepeval)|61.9|73.8|70.7|(35.3, 29.6)|
|[SPECTER2 Base](allenai/specter2_base)|56.3|73.6|69.1|(38.0, 32.4)|
|[SPECTER2-Adapters](https://huggingface.co./models?search=allenai/specter-2)|**62.3**|**74.1**|**71.1**|**(38.4, 33.0)**|
Please cite the following works if you end up using SPECTER2:
```
[SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
```bibtex
@inproceedings{Singh2022SciRepEvalAM,
title={SciRepEval: A Multi-Format Benchmark for Scientific Document Representations},
author={Amanpreet Singh and Mike D'Arcy and Arman Cohan and Doug Downey and Sergey Feldman},
booktitle={Conference on Empirical Methods in Natural Language Processing},
year={2022},
url={https://api.semanticscholar.org/CorpusID:254018137}
}
```
|