Text Generation
Transformers
PyTorch
Safetensors
English
hf_olmo
custom_code
File size: 17,489 Bytes
e09513d
 
 
 
 
 
 
 
 
 
 
 
9d2a614
e09513d
 
 
98eae16
 
e09513d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd9544
 
 
e09513d
 
 
 
 
 
5d2b8c2
e09513d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba79cfd
e09513d
 
 
 
a172b89
e09513d
cf436c7
e09513d
 
 
 
 
 
 
 
 
 
 
 
 
6bd9544
e09513d
6bd9544
 
86ea642
e09513d
 
 
 
 
 
 
 
 
6bd9544
e09513d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
license: apache-2.0
datasets:
- allenai/dolma
language:
- en
---


<img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# Model Card for OLMo 7B Twin 2T

<!-- Provide a quick summary of what the model is/does. -->

**For transformers versions v4.40.0 or newer, please use [OLMo 7B Twin 2T HF](https://huggingface.co./allenai/OLMo-7B-Twin-2T-hf) instead.**

OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
The OLMo models are trained on the [Dolma](https://huggingface.co./datasets/allenai/dolma) dataset.
We release all code, checkpoints, logs (coming soon), and details involved in training these models.

## Model Details

The core models released in this batch are the following: 
| Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
|------|--------|---------|-------------|-----------------|----------------|
| [OLMo 1B](https://huggingface.co./allenai/OLMo-1B)   | 3 Trillion |16     | 2048        | 16              | 2048  |
| [OLMo 7B](https://huggingface.co./allenai/OLMo-7B) | 2.5 Trillion   | 32     | 4096        | 32              |  2048  |
| [OLMo 7B Twin 2T](https://huggingface.co./allenai/OLMo-7B-Twin-2T) | 2 Trillion   | 32     | 4096        | 32              |  2048  |

We are releasing many checkpoints for these models, for every 1000 traing steps.
The naming convention is `step1000-tokens4B`.
In particular, we focus on four revisions of the 7B models:

| Name | HF Repo | Model Revision |  Tokens | Note |
|------------|---------|----------------|-------------------|------|
|OLMo 7B| [allenai/OLMo-7B](https://huggingface.co./allenai/OLMo-7B)|`main`| 2.5T|The base OLMo 7B model|
|OLMo 7B (not annealed)|[allenai/OLMo-7B](https://huggingface.co./allenai/OLMo-7B)|step556000-tokens2460B|2.5T| learning rate not annealed to 0|
|OLMo 7B-2T|[allenai/OLMo-7B](https://huggingface.co./allenai/OLMo-7B)| step452000-tokens2000B |2T| OLMo checkpoint at 2T tokens|
|OLMo-7B-Twin-2T|[allenai/OLMo-7B-Twin-2T](https://huggingface.co./allenai/OLMo-7B-Twin-2T)|`main`|2T| Twin version on different hardware|

To load a specific model revision with HuggingFace, simply add the argument `revision`:
```bash
from hf_olmo import OLMoForCausalLM  # pip install ai2-olmo

olmo = OLMoForCausalLM.from_pretrained("allenai/OLMo-7B-Twin-2T", revision="step1000-tokens4B")
```

All revisions/branches are listed in the file `revisions.txt`. 
Or, you can access all the revisions for the models via the following code snippet:
```python
from huggingface_hub import list_repo_refs
out = list_repo_refs("allenai/OLMo-7B-Twin-2T")
branches = [b.name for b in out.branches]
```
A few revisions were lost due to an error, but the vast majority are present.

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Allen Institute for AI (AI2)
- **Supported by:** Databricks, Kempner Institute for the Study of Natural and Artificial Intelligence at Harvard University, AMD, CSC (Lumi Supercomputer), UW
- **Model type:** a Transformer style autoregressive language model.
- **Language(s) (NLP):** English
- **License:** The code and model are released under Apache 2.0.
- **Contact:** Technical inquiries: `olmo at allenai dot org`. Press: `press at allenai dot org`
- **Date cutoff:** Feb./March 2023 based on Dolma dataset version.


### Model Sources

<!-- Provide the basic links for the model. -->

- **Project Page:** https://allenai.org/olmo
- **Repositories:** 
    - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
    - Evaluation code: https://github.com/allenai/OLMo-Eval
    - Further fine-tuning code: https://github.com/allenai/open-instruct
- **Paper:** [Link](https://arxiv.org/abs/2402.00838)
- **Technical blog post:** https://blog.allenai.org/olmo-open-language-model-87ccfc95f580
- **W&B Logs:** https://wandb.ai/ai2-llm/OLMo-7B/reports/OLMo-7B-Twin-2T--Vmlldzo2NzU0NTIz
<!-- - **Press release:** TODO -->

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Inference
Quickly get inference running with the following required installation:
```bash
pip install ai2-olmo
```
Now, proceed as usual with HuggingFace:
```python
from hf_olmo import OLMoForCausalLM, OLMoTokenizerFast

olmo = OLMoForCausalLM.from_pretrained("allenai/OLMo-7B-Twin-2T")
tokenizer = OLMoTokenizerFast.from_pretrained("allenai/OLMo-7B-Twin-2T")
message = ["Language modeling is"]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
# optional verifying cuda
# inputs = {k: v.to('cuda') for k,v in inputs.items()}
# olmo = olmo.to('cuda')
response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
>> 'Language modeling is the first step to build natural language generation...'
```

You can make this slightly faster by quantizing the model, e.g. `AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B", torch_dtype=torch.float16, load_in_8bit=True)` (requires `bitsandbytes`).
The quantized model is more sensitive to typing / cuda, so it is recommended to pass the inputs as `inputs.input_ids.to('cuda')` to avoid potential issues.

Note, you may see the following error if `ai2-olmo` is not installed correctly, which is caused by internal Python check naming. We'll update the code soon to make this error clearer.
```bash
    raise ImportError(
ImportError: This modeling file requires the following packages that were not found in your environment: hf_olmo. Run `pip install hf_olmo`
```

### Fine-tuning
Model fine-tuning can be done from the final checkpoint (the `main` revision of this model) or many intermediate checkpoints. Two recipes for tuning are available.
1. Fine-tune with the OLMo repository:
```bash
torchrun --nproc_per_node=8 scripts/train.py {path_to_train_config} \
    --data.paths=[{path_to_data}/input_ids.npy] \
    --data.label_mask_paths=[{path_to_data}/label_mask.npy] \
    --load_path={path_to_checkpoint} \
    --reset_trainer_state
```
For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?tab=readme-ov-file#fine-tuning).

2. Further fine-tuning support is being developing in AI2's Open Instruct repository. Details are [here](https://github.com/allenai/open-instruct).

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

Core model results for the 7B model are found below.

|                                   | [Llama 7B](https://arxiv.org/abs/2302.13971) | [Llama 2 7B](https://huggingface.co./meta-llama/Llama-2-7b) | [Falcon 7B](https://huggingface.co./tiiuae/falcon-7b) | [MPT 7B](https://huggingface.co./mosaicml/mpt-7b) | **OLMo 7B** (ours) |
| --------------------------------- | -------- | ---------- | --------- | ------ | ------- |
| arc_challenge       | 44.5             | 39.8             | 47.5         | 46.5         | 48.5            |
| arc_easy            | 57.0             | 57.7             | 70.4         | 70.5         | 65.4            |
| boolq               | 73.1             | 73.5             | 74.6         | 74.2         | 73.4            |
| copa                | 85.0             | 87.0             | 86.0         | 85.0         | 90              |
| hellaswag           | 74.5             | 74.5             | 75.9         | 77.6         | 76.4            |
| openbookqa          | 49.8             | 48.4             | 53.0         | 48.6         | 50.2            |
| piqa                | 76.3             | 76.4             | 78.5         | 77.3         | 78.4            |
| sciq                | 89.5             | 90.8             | 93.9         | 93.7         | 93.8            |
| winogrande          | 68.2             | 67.3             | 68.9         | 69.9         | 67.9            |
| **Core tasks average**  | 68.7             | 68.4             | 72.1         | 71.5         | 71.6            |
| truthfulQA (MC2)    | 33.9             | 38.5             | 34.0         | 33           | 36.0            |
| MMLU (5 shot MC)    | 31.5             | 45.0             | 24.0         | 30.8         | 28.3            |
| GSM8k (mixed eval.) | 10.0 (8shot CoT) | 12.0 (8shot CoT) | 4.0 (5 shot) | 4.5 (5 shot) | 8.5 (8shot CoT) |
| **Full average**        | 57.8             | 59.3             | 59.2         | 59.3         | 59.8            |

And for the 1B model:

| task       | random | [StableLM 2 1.6b](https://huggingface.co./stabilityai/stablelm-2-1_6b)\* | [Pythia 1B](https://huggingface.co./EleutherAI/pythia-1b) | [TinyLlama 1.1B](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T) | **OLMo 1B** (ours) |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------ | ----------------- | --------- | -------------------------------------- | ------- |
| arc_challenge | 25     | 43.81             | 33.11     | 34.78                                  | 34.45   |
| arc_easy      | 25     | 63.68             | 50.18     | 53.16                                  | 58.07   |
| boolq         | 50     | 76.6              | 61.8      | 64.6                                   | 60.7    |
| copa          | 50     | 84                | 72        | 78                                     | 79      |
| hellaswag     | 25     | 68.2              | 44.7      | 58.7                                   | 62.5    |
| openbookqa    | 25     | 45.8              | 37.8      | 43.6                                   | 46.4    |
| piqa          | 50     | 74                | 69.1      | 71.1                                   | 73.7    |
| sciq          | 25     | 94.7              | 86        | 90.5                                   | 88.1    |
| winogrande    | 50     | 64.9              | 53.3      | 58.9                                   | 58.9    |
| Average       | 36.11  | 68.41             | 56.44     | 61.48                                  | 62.42   |

\*Unlike OLMo, Pythia, and TinyLlama, StabilityAI has not disclosed yet the data StableLM was trained on, making comparisons with other efforts challenging.

## Model Details

### Data
For training data details, please see the [Dolma](https://huggingface.co./datasets/allenai/dolma) documentation.

### Architecture

OLMo 7B architecture with peer models for comparison.

|                        | **OLMo 7B**   | [Llama 2 7B](https://huggingface.co./meta-llama/Llama-2-7b) | [OpenLM 7B](https://laion.ai/blog/open-lm/) | [Falcon 7B](https://huggingface.co./tiiuae/falcon-7b) | PaLM 8B |
|------------------------|-------------------|---------------------|--------------------|--------------------|------------------|
| d_model     | 4096              | 4096                | 4096               | 4544               | 4096             |
| num heads              | 32                | 32                  | 32                 | 71                 | 16               |
| num layers             | 32                | 32                  | 32                 | 32                 | 32               |
| MLP ratio              | ~8/3         | ~8/3           | ~8/3          | 4                  | 4                |
| LayerNorm type         | non-parametric LN | RMSNorm             | parametric LN      | parametric LN      | parametric LN    |
| pos embeddings         | RoPE              | RoPE                | RoPE               | RoPE               | RoPE             |
| attention variant      | full              | GQA                 | full               | MQA                | MQA              |
| biases                 | none              | none                | in LN only         | in LN only         | none             |
| block type             | sequential        | sequential          | sequential         | parallel           | parallel         |
| activation             | SwiGLU            | SwiGLU              | SwiGLU             | GeLU               | SwiGLU           |
| sequence length        | 2048              | 4096                | 2048               | 2048               | 2048             |
| batch size (instances) | 2160              | 1024                | 2048               | 2304               | 512              |
| batch size (tokens)    | ~4M          | ~4M            | ~4M           | ~4M           | ~1M         |
| weight tying           | no                | no                  | no                 | no                 | yes              |


### Hyperparameters 

AdamW optimizer parameters are shown below.

| Size | Peak LR    | Betas           | Epsilon     | Weight Decay |
|------|------------|-----------------|-------------|--------------|
| 1B   | 4.0E-4   | (0.9, 0.95)   | 1.0E-5    | 0.1          |
| 7B   | 3.0E-4   | (0.9, 0.99)   | 1.0E-5    | 0.1          |

Optimizer settings comparison with peer models.

|                       | **OLMo 7B**  | [Llama 2 7B](https://huggingface.co./meta-llama/Llama-2-7b) | [OpenLM 7B](https://laion.ai/blog/open-lm/) | [Falcon 7B](https://huggingface.co./tiiuae/falcon-7b) |
|-----------------------|------------------|---------------------|--------------------|--------------------|
| warmup steps          | 5000             | 2000                | 2000               | 1000               |
| peak LR               | 3.0E-04 | 3.0E-04    | 3.0E-04   | 6.0E-04  |
| minimum LR            | 3.0E-05 | 3.0E-05    | 3.0E-05   | 1.2E-05   |
| weight decay          | 0.1              | 0.1                 | 0.1                | 0.1                |
| beta1                 | 0.9              | 0.9                 | 0.9                | 0.99               |
| beta2                 | 0.95             | 0.95                | 0.95               | 0.999              |
| epsilon               | 1.0E-05 | 1.0E-05    | 1.0E-05   | 1.0E-05   |
| LR schedule           | linear           | cosine              | cosine             | cosine             |
| gradient clipping     | global 1.0       | global 1.0          | global 1.0         | global 1.0         |
| gradient reduce dtype | FP32             | FP32                | FP32               | BF16               |
| optimizer state dtype | FP32             | most likely FP32    | FP32               | FP32               |



## Environmental Impact

OLMo 7B variants were either trained on MI250X GPUs at the LUMI supercomputer, or A100-40GB GPUs provided by MosaicML.
A summary of the environmental impact. Further details are available in the paper.

|           | GPU Type   | Power Consumption From GPUs | Carbon Intensity (kg CO₂e/KWh) | Carbon Emissions (tCO₂eq) |
|-----------|------------|-----------------------------|--------------------------------|---------------------------|
| OLMo 7B Twin  | MI250X ([LUMI supercomputer](https://www.lumi-supercomputer.eu))   |  135 MWh                     | 0*                             | 0*                        |
| OLMo 7B   | A100-40GB ([MosaicML](https://www.mosaicml.com)) |  104 MWh                     | 0.656                          | 75.05                     |

## Bias, Risks, and Limitations

Like any base language model or fine-tuned model without safety filtering, it is relatively easy for a user to prompt these models to generate harmful and generally sensitive content.
Such content can also be produced unintentionally, especially in the case of bias, so we recommend users consider the risks of applications of this technology.

Otherwise, many facts from OLMo or any LLM will often not be true, so they should be checked.


## Citation

**BibTeX:**

```
@article{Groeneveld2023OLMo,
  title={OLMo: Accelerating the Science of Language Models},
  author={Groeneveld, Dirk and Beltagy, Iz and Walsh, Pete and Bhagia, Akshita and Kinney, Rodney and Tafjord, Oyvind and Jha, Ananya Harsh and Ivison, Hamish and Magnusson, Ian and Wang, Yizhong and Arora, Shane and Atkinson, David and Authur, Russell and Chandu, Khyathi and Cohan, Arman and Dumas, Jennifer and Elazar, Yanai and Gu, Yuling and Hessel, Jack and Khot, Tushar and Merrill, William and Morrison, Jacob and Muennighoff, Niklas and Naik, Aakanksha and Nam, Crystal and Peters, Matthew E. and Pyatkin, Valentina and Ravichander, Abhilasha and Schwenk, Dustin and Shah, Saurabh and Smith, Will and Subramani, Nishant and Wortsman, Mitchell and Dasigi, Pradeep and Lambert, Nathan and Richardson, Kyle and Dodge, Jesse and Lo, Kyle and Soldaini, Luca and Smith, Noah A. and Hajishirzi, Hannaneh},
  journal={Preprint},
  year={2024}
}
```

**APA:**

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A., Ivison, H., Magnusson, I., Wang, Y., Arora, S., Atkinson, D., Authur, R., Chandu, K., Cohan, A., Dumas, J., Elazar, Y., Gu, Y., Hessel, J., Khot, T., Merrill, W., Morrison, J., Muennighoff, N., Naik, A., Nam, C., Peters, M., Pyatkin, V., Ravichander, A., Schwenk, D., Shah, S., Smith, W., Subramani, N., Wortsman, M., Dasigi, P., Lambert, N., Richardson, K., Dodge, J., Lo, K., Soldaini, L., Smith, N., & Hajishirzi, H. (2024). OLMo: Accelerating the Science of Language Models. Preprint.

## Model Card Contact


For errors in this model card, contact Nathan or Akshita, `{nathanl, akshitab} at allenai dot org`.