Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# Molmo 7B-D
|
6 |
+
|
7 |
+
## Quick Start
|
8 |
+
|
9 |
+
To run Molmo, first install dependencies:
|
10 |
+
|
11 |
+
```bash
|
12 |
+
pip install einops torch torchvision PIL
|
13 |
+
```
|
14 |
+
|
15 |
+
Then, follow these steps:
|
16 |
+
|
17 |
+
```python
|
18 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
19 |
+
from PIL import Image
|
20 |
+
import requests
|
21 |
+
|
22 |
+
# load the processor
|
23 |
+
processor = AutoProcessor.from_pretrained(
|
24 |
+
'allenai/Molmo-7B-D-0924',
|
25 |
+
trust_remote_code=True,
|
26 |
+
torch_dtype='auto',
|
27 |
+
device_map='auto'
|
28 |
+
)
|
29 |
+
|
30 |
+
# load the model
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
'allenai/Molmo-7B-D-0924',
|
33 |
+
trust_remote_code=True,
|
34 |
+
torch_dtype='auto',
|
35 |
+
device_map='auto'
|
36 |
+
)
|
37 |
+
|
38 |
+
# process the image and text
|
39 |
+
inputs = processor.process(
|
40 |
+
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
|
41 |
+
text="Describe this image."
|
42 |
+
)
|
43 |
+
|
44 |
+
# move inputs to the correct device and make a batch of size 1
|
45 |
+
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
46 |
+
|
47 |
+
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
|
48 |
+
output = model.generate_from_batch(
|
49 |
+
inputs,
|
50 |
+
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
51 |
+
tokenizer=processor.tokenizer
|
52 |
+
)
|
53 |
+
|
54 |
+
# only get generated tokens; decode them to text
|
55 |
+
generated_tokens = output[0,inputs['input_ids'].size(1):]
|
56 |
+
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
57 |
+
|
58 |
+
# print the generated text
|
59 |
+
print(generated_text)
|
60 |
+
```
|