Upload image_preprocessing_molmo.py with huggingface_hub
Browse files- image_preprocessing_molmo.py +38 -59
image_preprocessing_molmo.py
CHANGED
@@ -15,36 +15,13 @@ from transformers.image_utils import (
|
|
15 |
is_valid_image,
|
16 |
)
|
17 |
from transformers.processing_utils import ImagesKwargs
|
18 |
-
from transformers.image_processing_utils import BaseImageProcessor
|
19 |
-
from transformers.utils import
|
20 |
|
21 |
|
22 |
logger = logging.get_logger(__name__)
|
23 |
|
24 |
|
25 |
-
def make_batched_images(images) -> List[List[ImageInput]]:
|
26 |
-
"""
|
27 |
-
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
28 |
-
|
29 |
-
Args:
|
30 |
-
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
31 |
-
The input image.
|
32 |
-
|
33 |
-
Returns:
|
34 |
-
list: A list of images.
|
35 |
-
"""
|
36 |
-
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
37 |
-
return [img for img_list in images for img in img_list]
|
38 |
-
|
39 |
-
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
40 |
-
return images
|
41 |
-
|
42 |
-
elif is_valid_image(images):
|
43 |
-
return [images]
|
44 |
-
|
45 |
-
raise ValueError(f"Could not make batched images from {images}")
|
46 |
-
|
47 |
-
|
48 |
def pad_to_bounding_box(
|
49 |
image, offset_height, offset_width, target_height,
|
50 |
target_width, value=0
|
@@ -68,7 +45,7 @@ def normalize_image(image, offset, scale):
|
|
68 |
def resize_and_pad(
|
69 |
image,
|
70 |
desired_output_size,
|
71 |
-
resize_method=
|
72 |
pad_value=0,
|
73 |
normalize=True,
|
74 |
image_mean=OPENAI_CLIP_MEAN,
|
@@ -85,26 +62,29 @@ def resize_and_pad(
|
|
85 |
scaled_height = int(np.array(height, np.float32) * image_scale)
|
86 |
scaled_width = int(np.array(width, np.float32) * image_scale)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
image
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
top_pad = (desired_height - scaled_height) // 2
|
110 |
left_pad = (desired_width - scaled_width) // 2
|
@@ -201,18 +181,6 @@ class MolmoImageProcessor(BaseImageProcessor):
|
|
201 |
image_token_length_h: Optional[int] = None,
|
202 |
image_patch_size: Optional[int] = None,
|
203 |
):
|
204 |
-
"""Preprocesses an image
|
205 |
-
|
206 |
-
Returns:
|
207 |
-
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
208 |
-
change between images but the other dimension are fixed
|
209 |
-
tokens: (n_tokens,) int32 tokens, pad tokens indicating where to insert the
|
210 |
-
patch features, might include other special tokens as well
|
211 |
-
patch_ordering: (n_crops, n_tokens_per_crop) order image features should be inserted
|
212 |
-
into the `tokens`, negative values indicates patches features to exclude
|
213 |
-
padding_mask: (n_crops, n_patches) what percent of each crop is padding, be None
|
214 |
-
if the image mask is not being used.
|
215 |
-
"""
|
216 |
if isinstance(base_image_input_size, int):
|
217 |
base_image_input_size = (base_image_input_size, base_image_input_size)
|
218 |
|
@@ -438,7 +406,18 @@ class MolmoImageProcessor(BaseImageProcessor):
|
|
438 |
image_patch_size: Optional[int] = None,
|
439 |
**kwargs,
|
440 |
):
|
441 |
-
"""Preprocesses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
|
443 |
max_crops = max_crops or self.max_crops
|
444 |
overlap_margins = overlap_margins or self.overlap_margins
|
|
|
15 |
is_valid_image,
|
16 |
)
|
17 |
from transformers.processing_utils import ImagesKwargs
|
18 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
19 |
+
from transformers.utils import logging
|
20 |
|
21 |
|
22 |
logger = logging.get_logger(__name__)
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def pad_to_bounding_box(
|
26 |
image, offset_height, offset_width, target_height,
|
27 |
target_width, value=0
|
|
|
45 |
def resize_and_pad(
|
46 |
image,
|
47 |
desired_output_size,
|
48 |
+
resize_method="torch-bilinear",
|
49 |
pad_value=0,
|
50 |
normalize=True,
|
51 |
image_mean=OPENAI_CLIP_MEAN,
|
|
|
62 |
scaled_height = int(np.array(height, np.float32) * image_scale)
|
63 |
scaled_width = int(np.array(width, np.float32) * image_scale)
|
64 |
|
65 |
+
if resize_method == "tensorflow":
|
66 |
+
# This how the original training code did resizing, it can produce slightly different
|
67 |
+
# results then using torch resize so we keep it just in case
|
68 |
+
import tensorflow as tf
|
69 |
+
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
|
70 |
+
image = tf.image.resize(
|
71 |
+
image,
|
72 |
+
[scaled_height, scaled_width],
|
73 |
+
method=tf.image.ResizeMethod.BILINEAR,
|
74 |
+
antialias=True,
|
75 |
+
)
|
76 |
+
image = tf.clip_by_value(image, 0.0, 1.0)
|
77 |
+
image = image.numpy()
|
78 |
+
elif resize_method == "torch-bilinear":
|
79 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
80 |
+
image = convert_image_dtype(image) # resize in float32 to match the training code
|
81 |
+
image = torchvision.transforms.Resize(
|
82 |
+
[scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
83 |
+
)(image)
|
84 |
+
image = torch.clip(image, 0.0, 1.0)
|
85 |
+
image = torch.permute(image, [1, 2, 0]).numpy()
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(resize_method)
|
88 |
|
89 |
top_pad = (desired_height - scaled_height) // 2
|
90 |
left_pad = (desired_width - scaled_width) // 2
|
|
|
181 |
image_token_length_h: Optional[int] = None,
|
182 |
image_patch_size: Optional[int] = None,
|
183 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
if isinstance(base_image_input_size, int):
|
185 |
base_image_input_size = (base_image_input_size, base_image_input_size)
|
186 |
|
|
|
406 |
image_patch_size: Optional[int] = None,
|
407 |
**kwargs,
|
408 |
):
|
409 |
+
"""Preprocesses an image
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
413 |
+
change between images but the other dimension are fixed
|
414 |
+
tokens: (n_tokens,) int32 tokens, pad tokens indicate where to insert the
|
415 |
+
patch features, might include other special tokens as well
|
416 |
+
image_idx: (n_crops, n_patches) index in `tokens` to put the patch features from the
|
417 |
+
crops after pooling, negative values indicates patches features to exclude
|
418 |
+
padding_mask: (n_crops, n_patches) what percent of each crop is padding, can be None
|
419 |
+
if the image mask is not being used.
|
420 |
+
"""
|
421 |
|
422 |
max_crops = max_crops or self.max_crops
|
423 |
overlap_margins = overlap_margins or self.overlap_margins
|