from train import Train from test import Test from config import DatasetName, ModelArch from pca_utilities import PCAUtility if __name__ == '__main__': '''use the pretrained model''' tester = Test() tester.test_model(ds_name=DatasetName.w300, pretrained_model_path='./pre_trained_models/ACRLoss/mnv2.h5') '''training model from scratch''' # pretrain prerequisites # 1- PCA calculation: pca_calc = PCAUtility() pca_calc.create_pca_from_npy(dataset_name=DatasetName.w300, labels_npy_path='./data/w300/normalized_labels/', pca_percentages=90) # Train: trainer = Train(arch=ModelArch.MNV2, dataset_name=DatasetName.w300, save_path='./')