--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment-analysis-whatsapp results: [] --- # sentiment-analysis-whatsapp This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co./microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2229 - Accuracy: {'accuracy': 0.929} - F1 Macro: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 99 - gradient_accumulation_steps: 5 - total_train_batch_size: 320 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | No log | 1.0 | 50 | 0.6396 | {'accuracy': 0.7845} | 0.7828 | | No log | 2.0 | 100 | 0.2665 | {'accuracy': 0.915} | 0.9145 | | No log | 3.0 | 150 | 0.2229 | {'accuracy': 0.929} | 0.9285 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2