--- library_name: transformers tags: - code license: apache-2.0 language: - en pipeline_tag: text-generation --- # Model Card for Model ID This model is trained on generating SQL code from user prompts. ## Model Details ### Model Description This model is traiend for generating SQL code from user prompts. The prompt structure is based on this format. ###Question ###Context[SQL code of your table ] ###Answer: This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Ali Bidaran - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** Gemma 2B ### Model Sources [optional] ### Direct Use ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer model_id = "Gemma2_SQLGEN" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}) tokenizer.padding_side = 'right' ) from peft import LoraConfig, PeftModel, get_peft_model from trl import SFTTrainer prompt = "find unique items from name coloum." text=f"##Question: {prompt} \n ##Context: CREATE TABLE head (head_id VARCHAR, name VARCHAR) \n ##Answer:" inputs=tokenizer(text,return_tensors='pt').to('cuda') outputs=model.generate(**inputs,max_new_tokens=400,do_sample=True,top_p=0.92,top_k=10,temperature=0.7) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```