#!/usr/bin/env python import os import logging from collections import OrderedDict import torch from torch import nn from einops import rearrange from timm.models.layers import DropPath from timm.models.registry import register_model import torch.utils.checkpoint as checkpoint logger = logging.getLogger(__name__) def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True): """ Add/Remove extra temporal_embeddings as needed. https://arxiv.org/abs/2104.00650 shows adding zero paddings works. temp_embed_old: (1, num_frames_old, 1, d) temp_embed_new: (1, num_frames_new, 1, d) add_zero: bool, if True, add zero, else, interpolate trained embeddings. """ # TODO zero pad num_frms_new = temp_embed_new.shape[1] num_frms_old = temp_embed_old.shape[1] logger.info(f"Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}") if num_frms_new > num_frms_old: if add_zero: temp_embed_new[ :, :num_frms_old ] = temp_embed_old # untrained embeddings are zeros. else: temp_embed_new = interpolate_temporal_pos_embed(temp_embed_old, num_frms_new) elif num_frms_new < num_frms_old: temp_embed_new = temp_embed_old[:, :num_frms_new] else: # = temp_embed_new = temp_embed_old return temp_embed_new class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model, n_head, drop_path=0., attn_mask=None, dropout=0.): super().__init__() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() # logger.info(f'Droppath: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout) self.ln_1 = nn.LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("drop1", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_model * 4, d_model)), ("drop2", nn.Dropout(dropout)), ])) self.ln_2 = nn.LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x): x = x + self.drop_path1(self.attention(self.ln_1(x))) x = x + self.drop_path2(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__(self, width, layers, heads, drop_path=0., checkpoint_num=0, dropout=0.): super().__init__() dpr = [x.item() for x in torch.linspace(0, drop_path, layers)] self.resblocks = nn.ModuleList() for idx in range(layers): self.resblocks.append(ResidualAttentionBlock(width, heads, drop_path=dpr[idx], dropout=dropout)) self.checkpoint_num = checkpoint_num def forward(self, x): for idx, blk in enumerate(self.resblocks): if idx < self.checkpoint_num: x = checkpoint.checkpoint(blk, x) else: x = blk(x) return x class VisionTransformer(nn.Module): def __init__( self, input_resolution, patch_size, width, layers, heads, output_dim=None, kernel_size=1, num_frames=8, drop_path=0, checkpoint_num=0, dropout=0., temp_embed=True, ): super().__init__() self.output_dim = output_dim self.conv1 = nn.Conv3d( 3, width, (kernel_size, patch_size, patch_size), (kernel_size, patch_size, patch_size), (0, 0, 0), bias=False ) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = nn.LayerNorm(width) if temp_embed: self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width)) self.transformer = Transformer( width, layers, heads, drop_path=drop_path, checkpoint_num=checkpoint_num, dropout=dropout) self.ln_post = nn.LayerNorm(width) if output_dim is not None: self.proj = nn.Parameter(torch.empty(width, output_dim)) else: self.proj = None self.dropout = nn.Dropout(dropout) def get_num_layers(self): return len(self.transformer.resblocks) @torch.jit.ignore def no_weight_decay(self): return {'positional_embedding', 'class_embedding', 'temporal_positional_embedding'} def mask_tokens(self, inputs, masking_prob=0.0): B, L, _ = inputs.shape # This is different from text as we are masking a fix number of tokens Lm = int(masking_prob * L) masked_indices = torch.zeros(B, L) indices = torch.argsort(torch.rand_like(masked_indices), dim=-1)[:, :Lm] batch_indices = ( torch.arange(masked_indices.shape[0]).unsqueeze(-1).expand_as(indices) ) masked_indices[batch_indices, indices] = 1 masked_indices = masked_indices.bool() return inputs[~masked_indices].reshape(B, -1, inputs.shape[-1]) def forward(self, x, masking_prob=0.0): x = self.conv1(x) # shape = [*, width, grid, grid] B, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) # temporal pos cls_tokens = x[:B, :1, :] x = x[:, 1:] x = rearrange(x, '(b t) n m -> (b n) t m', b=B, t=T) if hasattr(self, 'temporal_positional_embedding'): if x.size(1) == 1: # This is a workaround for unused parameter issue x = x + self.temporal_positional_embedding.mean(1) else: x = x + self.temporal_positional_embedding x = rearrange(x, '(b n) t m -> b (n t) m', b=B, t=T) if masking_prob > 0.0: x = self.mask_tokens(x, masking_prob) x = torch.cat((cls_tokens, x), dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) #BND -> NBD x = self.transformer(x) x = self.ln_post(x) if self.proj is not None: x = self.dropout(x[0]) @ self.proj else: x = x.permute(1, 0, 2) #NBD -> BND return x def inflate_weight(weight_2d, time_dim, center=True): logger.info(f'Init center: {center}') if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def load_state_dict(model, state_dict, input_resolution=224, patch_size=16, center=True): state_dict_3d = model.state_dict() for k in state_dict.keys(): if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: logger.info(f'Ignore: {k}') continue logger.info(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim, center=center) pos_embed_checkpoint = state_dict['positional_embedding'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = (input_resolution // patch_size) ** 2 orig_size = int((pos_embed_checkpoint.shape[-2] - 1) ** 0.5) new_size = int(num_patches ** 0.5) if orig_size != new_size: logger.info(f'Pos_emb from {orig_size} to {new_size}') extra_tokens = pos_embed_checkpoint[:1] pos_tokens = pos_embed_checkpoint[1:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(0, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0) state_dict['positional_embedding'] = new_pos_embed message = model.load_state_dict(state_dict, strict=False) logger.info(f"Load pretrained weights: {message}") @register_model def clip_joint_b16( pretrained=False, input_resolution=224, kernel_size=1, center=True, num_frames=8, drop_path=0., checkpoint_num=0, dropout=0., ): model = VisionTransformer( input_resolution=input_resolution, patch_size=16, width=768, layers=12, heads=12, output_dim=512, kernel_size=kernel_size, num_frames=num_frames, drop_path=drop_path, checkpoint_num=checkpoint_num, dropout=dropout, ) if pretrained: if isinstance(pretrained, str): model_name = pretrained else: model_name = "ViT-B/16" logger.info('load pretrained weights') state_dict = torch.load(_MODELS[model_name], map_location='cpu') load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=16, center=center) return model.eval() @register_model def clip_joint_l14( pretrained=False, input_resolution=224, kernel_size=1, center=True, num_frames=8, drop_path=0., checkpoint_num=0, dropout=0., ): model = VisionTransformer( input_resolution=input_resolution, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, kernel_size=kernel_size, num_frames=num_frames, drop_path=drop_path, checkpoint_num=checkpoint_num, dropout=dropout, ) if pretrained: if isinstance(pretrained, str): model_name = pretrained else: model_name = "ViT-L/14" logger.info('load pretrained weights') state_dict = torch.load(_MODELS[model_name], map_location='cpu') load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center) return model.eval() @register_model def clip_joint_l14_336( pretrained=True, input_resolution=336, kernel_size=1, center=True, num_frames=8, drop_path=0. ): raise NotImplementedError model = VisionTransformer( input_resolution=input_resolution, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, kernel_size=kernel_size, num_frames=num_frames, drop_path=drop_path, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center) return model.eval() def interpolate_pos_embed_vit(state_dict, new_model): key = "vision_encoder.temporal_positional_embedding" if key in state_dict: vision_temp_embed_new = new_model.state_dict()[key] vision_temp_embed_new = vision_temp_embed_new.unsqueeze(2) # [1, n, d] -> [1, n, 1, d] vision_temp_embed_old = state_dict[key] vision_temp_embed_old = vision_temp_embed_old.unsqueeze(2) state_dict[key] = load_temp_embed_with_mismatch( vision_temp_embed_old, vision_temp_embed_new, add_zero=False ).squeeze(2) key = "text_encoder.positional_embedding" if key in state_dict: text_temp_embed_new = new_model.state_dict()[key] text_temp_embed_new = text_temp_embed_new.unsqueeze(0).unsqueeze(2) # [n, d] -> [1, n, 1, d] text_temp_embed_old = state_dict[key] text_temp_embed_old = text_temp_embed_old.unsqueeze(0).unsqueeze(2) state_dict[key] = load_temp_embed_with_mismatch( text_temp_embed_old, text_temp_embed_new, add_zero=False ).squeeze(2).squeeze(0) return state_dict