English
jpWang's picture
initial commit
1622f6b
raw
history blame
12.5 kB
#!/usr/bin/env python
import os
import logging
from collections import OrderedDict
import torch
from torch import nn
from einops import rearrange
from timm.models.layers import DropPath
from timm.models.registry import register_model
import torch.utils.checkpoint as checkpoint
logger = logging.getLogger(__name__)
def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True):
"""
Add/Remove extra temporal_embeddings as needed.
https://arxiv.org/abs/2104.00650 shows adding zero paddings works.
temp_embed_old: (1, num_frames_old, 1, d)
temp_embed_new: (1, num_frames_new, 1, d)
add_zero: bool, if True, add zero, else, interpolate trained embeddings.
"""
# TODO zero pad
num_frms_new = temp_embed_new.shape[1]
num_frms_old = temp_embed_old.shape[1]
logger.info(f"Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}")
if num_frms_new > num_frms_old:
if add_zero:
temp_embed_new[
:, :num_frms_old
] = temp_embed_old # untrained embeddings are zeros.
else:
temp_embed_new = interpolate_temporal_pos_embed(temp_embed_old, num_frms_new)
elif num_frms_new < num_frms_old:
temp_embed_new = temp_embed_old[:, :num_frms_new]
else: # =
temp_embed_new = temp_embed_old
return temp_embed_new
class QuickGELU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model, n_head, drop_path=0., attn_mask=None, dropout=0.):
super().__init__()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# logger.info(f'Droppath: {drop_path}')
self.attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout)
self.ln_1 = nn.LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("drop1", nn.Dropout(dropout)),
("c_proj", nn.Linear(d_model * 4, d_model)),
("drop2", nn.Dropout(dropout)),
]))
self.ln_2 = nn.LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x):
x = x + self.drop_path1(self.attention(self.ln_1(x)))
x = x + self.drop_path2(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(self, width, layers, heads, drop_path=0., checkpoint_num=0, dropout=0.):
super().__init__()
dpr = [x.item() for x in torch.linspace(0, drop_path, layers)]
self.resblocks = nn.ModuleList()
for idx in range(layers):
self.resblocks.append(ResidualAttentionBlock(width, heads, drop_path=dpr[idx], dropout=dropout))
self.checkpoint_num = checkpoint_num
def forward(self, x):
for idx, blk in enumerate(self.resblocks):
if idx < self.checkpoint_num:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
return x
class VisionTransformer(nn.Module):
def __init__(
self, input_resolution, patch_size, width, layers, heads, output_dim=None,
kernel_size=1, num_frames=8, drop_path=0, checkpoint_num=0, dropout=0.,
temp_embed=True,
):
super().__init__()
self.output_dim = output_dim
self.conv1 = nn.Conv3d(
3, width,
(kernel_size, patch_size, patch_size),
(kernel_size, patch_size, patch_size),
(0, 0, 0), bias=False
)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = nn.LayerNorm(width)
if temp_embed:
self.temporal_positional_embedding = nn.Parameter(torch.zeros(1, num_frames, width))
self.transformer = Transformer(
width, layers, heads, drop_path=drop_path, checkpoint_num=checkpoint_num,
dropout=dropout)
self.ln_post = nn.LayerNorm(width)
if output_dim is not None:
self.proj = nn.Parameter(torch.empty(width, output_dim))
else:
self.proj = None
self.dropout = nn.Dropout(dropout)
def get_num_layers(self):
return len(self.transformer.resblocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'positional_embedding', 'class_embedding', 'temporal_positional_embedding'}
def mask_tokens(self, inputs, masking_prob=0.0):
B, L, _ = inputs.shape
# This is different from text as we are masking a fix number of tokens
Lm = int(masking_prob * L)
masked_indices = torch.zeros(B, L)
indices = torch.argsort(torch.rand_like(masked_indices), dim=-1)[:, :Lm]
batch_indices = (
torch.arange(masked_indices.shape[0]).unsqueeze(-1).expand_as(indices)
)
masked_indices[batch_indices, indices] = 1
masked_indices = masked_indices.bool()
return inputs[~masked_indices].reshape(B, -1, inputs.shape[-1])
def forward(self, x, masking_prob=0.0):
x = self.conv1(x) # shape = [*, width, grid, grid]
B, C, T, H, W = x.shape
x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C)
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
# temporal pos
cls_tokens = x[:B, :1, :]
x = x[:, 1:]
x = rearrange(x, '(b t) n m -> (b n) t m', b=B, t=T)
if hasattr(self, 'temporal_positional_embedding'):
if x.size(1) == 1:
# This is a workaround for unused parameter issue
x = x + self.temporal_positional_embedding.mean(1)
else:
x = x + self.temporal_positional_embedding
x = rearrange(x, '(b n) t m -> b (n t) m', b=B, t=T)
if masking_prob > 0.0:
x = self.mask_tokens(x, masking_prob)
x = torch.cat((cls_tokens, x), dim=1)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) #BND -> NBD
x = self.transformer(x)
x = self.ln_post(x)
if self.proj is not None:
x = self.dropout(x[0]) @ self.proj
else:
x = x.permute(1, 0, 2) #NBD -> BND
return x
def inflate_weight(weight_2d, time_dim, center=True):
logger.info(f'Init center: {center}')
if center:
weight_3d = torch.zeros(*weight_2d.shape)
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
middle_idx = time_dim // 2
weight_3d[:, :, middle_idx, :, :] = weight_2d
else:
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
weight_3d = weight_3d / time_dim
return weight_3d
def load_state_dict(model, state_dict, input_resolution=224, patch_size=16, center=True):
state_dict_3d = model.state_dict()
for k in state_dict.keys():
if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape:
if len(state_dict_3d[k].shape) <= 2:
logger.info(f'Ignore: {k}')
continue
logger.info(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
time_dim = state_dict_3d[k].shape[2]
state_dict[k] = inflate_weight(state_dict[k], time_dim, center=center)
pos_embed_checkpoint = state_dict['positional_embedding']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = (input_resolution // patch_size) ** 2
orig_size = int((pos_embed_checkpoint.shape[-2] - 1) ** 0.5)
new_size = int(num_patches ** 0.5)
if orig_size != new_size:
logger.info(f'Pos_emb from {orig_size} to {new_size}')
extra_tokens = pos_embed_checkpoint[:1]
pos_tokens = pos_embed_checkpoint[1:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(0, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=0)
state_dict['positional_embedding'] = new_pos_embed
message = model.load_state_dict(state_dict, strict=False)
logger.info(f"Load pretrained weights: {message}")
@register_model
def clip_joint_b16(
pretrained=False, input_resolution=224, kernel_size=1,
center=True, num_frames=8, drop_path=0., checkpoint_num=0,
dropout=0.,
):
model = VisionTransformer(
input_resolution=input_resolution, patch_size=16,
width=768, layers=12, heads=12, output_dim=512,
kernel_size=kernel_size, num_frames=num_frames,
drop_path=drop_path, checkpoint_num=checkpoint_num,
dropout=dropout,
)
if pretrained:
if isinstance(pretrained, str):
model_name = pretrained
else:
model_name = "ViT-B/16"
logger.info('load pretrained weights')
state_dict = torch.load(_MODELS[model_name], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=16, center=center)
return model.eval()
@register_model
def clip_joint_l14(
pretrained=False, input_resolution=224, kernel_size=1,
center=True, num_frames=8, drop_path=0., checkpoint_num=0,
dropout=0.,
):
model = VisionTransformer(
input_resolution=input_resolution, patch_size=14,
width=1024, layers=24, heads=16, output_dim=768,
kernel_size=kernel_size, num_frames=num_frames,
drop_path=drop_path, checkpoint_num=checkpoint_num,
dropout=dropout,
)
if pretrained:
if isinstance(pretrained, str):
model_name = pretrained
else:
model_name = "ViT-L/14"
logger.info('load pretrained weights')
state_dict = torch.load(_MODELS[model_name], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
return model.eval()
@register_model
def clip_joint_l14_336(
pretrained=True, input_resolution=336, kernel_size=1,
center=True, num_frames=8, drop_path=0.
):
raise NotImplementedError
model = VisionTransformer(
input_resolution=input_resolution, patch_size=14,
width=1024, layers=24, heads=16, output_dim=768,
kernel_size=kernel_size, num_frames=num_frames,
drop_path=drop_path,
)
if pretrained:
logger.info('load pretrained weights')
state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu')
load_state_dict(model, state_dict, input_resolution=input_resolution, patch_size=14, center=center)
return model.eval()
def interpolate_pos_embed_vit(state_dict, new_model):
key = "vision_encoder.temporal_positional_embedding"
if key in state_dict:
vision_temp_embed_new = new_model.state_dict()[key]
vision_temp_embed_new = vision_temp_embed_new.unsqueeze(2) # [1, n, d] -> [1, n, 1, d]
vision_temp_embed_old = state_dict[key]
vision_temp_embed_old = vision_temp_embed_old.unsqueeze(2)
state_dict[key] = load_temp_embed_with_mismatch(
vision_temp_embed_old, vision_temp_embed_new, add_zero=False
).squeeze(2)
key = "text_encoder.positional_embedding"
if key in state_dict:
text_temp_embed_new = new_model.state_dict()[key]
text_temp_embed_new = text_temp_embed_new.unsqueeze(0).unsqueeze(2) # [n, d] -> [1, n, 1, d]
text_temp_embed_old = state_dict[key]
text_temp_embed_old = text_temp_embed_old.unsqueeze(0).unsqueeze(2)
state_dict[key] = load_temp_embed_with_mismatch(
text_temp_embed_old, text_temp_embed_new, add_zero=False
).squeeze(2).squeeze(0)
return state_dict