|
from collections import OrderedDict |
|
from typing import Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1): |
|
super().__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
|
|
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() |
|
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.relu3 = nn.ReLU(inplace=True) |
|
|
|
self.downsample = None |
|
self.stride = stride |
|
|
|
if stride > 1 or inplanes != planes * Bottleneck.expansion: |
|
|
|
self.downsample = nn.Sequential(OrderedDict([ |
|
("-1", nn.AvgPool2d(stride)), |
|
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), |
|
("1", nn.BatchNorm2d(planes * self.expansion)) |
|
])) |
|
|
|
def forward(self, x: torch.Tensor): |
|
identity = x |
|
|
|
out = self.relu1(self.bn1(self.conv1(x))) |
|
out = self.relu2(self.bn2(self.conv2(out))) |
|
out = self.avgpool(out) |
|
out = self.bn3(self.conv3(out)) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu3(out) |
|
return out |
|
|
|
|
|
class AttentionPool2d(nn.Module): |
|
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): |
|
super().__init__() |
|
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) |
|
self.k_proj = nn.Linear(embed_dim, embed_dim) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim) |
|
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) |
|
self.num_heads = num_heads |
|
|
|
def forward(self, x): |
|
x = x.flatten(start_dim=2).permute(2, 0, 1) |
|
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) |
|
x = x + self.positional_embedding[:, None, :].to(x.dtype) |
|
x, _ = F.multi_head_attention_forward( |
|
query=x[:1], key=x, value=x, |
|
embed_dim_to_check=x.shape[-1], |
|
num_heads=self.num_heads, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
in_proj_weight=None, |
|
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), |
|
bias_k=None, |
|
bias_v=None, |
|
add_zero_attn=False, |
|
dropout_p=0, |
|
out_proj_weight=self.c_proj.weight, |
|
out_proj_bias=self.c_proj.bias, |
|
use_separate_proj_weight=True, |
|
training=self.training, |
|
need_weights=False |
|
) |
|
return x.squeeze(0) |
|
|
|
|
|
class ModifiedResNet(nn.Module): |
|
""" |
|
A ResNet class that is similar to torchvision's but contains the following changes: |
|
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. |
|
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 |
|
- The final pooling layer is a QKV attention instead of an average pool |
|
""" |
|
|
|
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): |
|
super().__init__() |
|
self.output_dim = output_dim |
|
self.input_resolution = input_resolution |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(width // 2) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(width // 2) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(width) |
|
self.relu3 = nn.ReLU(inplace=True) |
|
self.avgpool = nn.AvgPool2d(2) |
|
|
|
|
|
self._inplanes = width |
|
self.layer1 = self._make_layer(width, layers[0]) |
|
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) |
|
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) |
|
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) |
|
|
|
embed_dim = width * 32 |
|
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) |
|
|
|
def _make_layer(self, planes, blocks, stride=1): |
|
layers = [Bottleneck(self._inplanes, planes, stride)] |
|
|
|
self._inplanes = planes * Bottleneck.expansion |
|
for _ in range(1, blocks): |
|
layers.append(Bottleneck(self._inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
def stem(x): |
|
x = self.relu1(self.bn1(self.conv1(x))) |
|
x = self.relu2(self.bn2(self.conv2(x))) |
|
x = self.relu3(self.bn3(self.conv3(x))) |
|
x = self.avgpool(x) |
|
return x |
|
|
|
x = x.type(self.conv1.weight.dtype) |
|
x = stem(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.attnpool(x) |
|
|
|
return x |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
ret = super().forward(x.type(torch.float32)) |
|
return ret.type(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)) |
|
])) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x: torch.Tensor): |
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = x + self.attention(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) |
|
|
|
def forward(self, x: torch.Tensor): |
|
return self.resblocks(x) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.output_dim = output_dim |
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) |
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) |
|
self.ln_pre = LayerNorm(width) |
|
|
|
self.transformer = Transformer(width, layers, heads) |
|
|
|
self.ln_post = LayerNorm(width) |
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
x = self.ln_post(x[:, 0, :]) |
|
|
|
if self.proj is not None: |
|
x = x @ self.proj |
|
|
|
return x |
|
|
|
|
|
class CLIP(nn.Module): |
|
def __init__(self, |
|
embed_dim: int, |
|
|
|
image_resolution: int, |
|
vision_layers: Union[Tuple[int, int, int, int], int], |
|
vision_width: int, |
|
vision_patch_size: int, |
|
|
|
context_length: int, |
|
vocab_size: int, |
|
transformer_width: int, |
|
transformer_heads: int, |
|
transformer_layers: int, |
|
load_from_clip: bool |
|
): |
|
super().__init__() |
|
|
|
self.context_length = 248 |
|
|
|
self.transformer = Transformer( |
|
width=transformer_width, |
|
layers=transformer_layers, |
|
heads=transformer_heads, |
|
attn_mask=self.build_attention_mask() |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width) |
|
|
|
if load_from_clip == False: |
|
self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width)) |
|
self.positional_embedding_res = nn.Parameter(torch.empty(248, transformer_width)) |
|
|
|
else: |
|
self.positional_embedding = nn.Parameter(torch.empty(77, transformer_width)) |
|
|
|
self.ln_final = LayerNorm(transformer_width) |
|
|
|
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
self.initialize_parameters() |
|
self.mask1 = torch.zeros([248, 1]) |
|
self.mask1[:20, :] = 1 |
|
self.mask2 = torch.zeros([248, 1]) |
|
self.mask2[20:, :] = 1 |
|
|
|
|
|
def initialize_parameters(self): |
|
nn.init.normal_(self.token_embedding.weight, std=0.02) |
|
nn.init.normal_(self.positional_embedding, std=0.01) |
|
|
|
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) |
|
attn_std = self.transformer.width ** -0.5 |
|
fc_std = (2 * self.transformer.width) ** -0.5 |
|
for block in self.transformer.resblocks: |
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) |
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) |
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) |
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) |
|
|
|
if self.text_projection is not None: |
|
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) |
|
|
|
def build_attention_mask(self): |
|
|
|
|
|
mask = torch.empty(self.context_length, self.context_length) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
@property |
|
def dtype(self): |
|
return self.token_embedding.weight.dtype |
|
|
|
def encode_text(self, text): |
|
x = self.token_embedding(text).type(self.dtype) |
|
|
|
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x).type(self.dtype) |
|
|
|
|
|
|
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |
|
|
|
return x |
|
|
|
def encode_text_full(self, text): |
|
x = self.token_embedding(text).type(self.dtype) |
|
|
|
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x).type(self.dtype) |
|
|
|
return x |
|
|
|
|
|
def convert_weights(model: nn.Module): |
|
"""Convert applicable model parameters to fp16""" |
|
|
|
def _convert_weights_to_fp16(l): |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): |
|
l.weight.data = l.weight.data.half() |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.half() |
|
|
|
if isinstance(l, nn.MultiheadAttention): |
|
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: |
|
tensor = getattr(l, attr) |
|
if tensor is not None: |
|
tensor.data = tensor.data.half() |
|
|
|
for name in ["text_projection", "proj"]: |
|
if hasattr(l, name): |
|
attr = getattr(l, name) |
|
if attr is not None: |
|
attr.data = attr.data.half() |
|
|
|
model.apply(_convert_weights_to_fp16) |
|
|
|
|
|
def build_model(load_from_clip: bool): |
|
|
|
vision_width = 1024 |
|
vision_layers = 24 |
|
vision_patch_size = 14 |
|
grid_size = 16 |
|
image_resolution = 224 |
|
|
|
embed_dim = 768 |
|
context_length = 248 |
|
vocab_size = 49408 |
|
transformer_width = 768 |
|
transformer_heads = 12 |
|
transformer_layers = 12 |
|
|
|
model = CLIP( |
|
embed_dim, |
|
image_resolution, vision_layers, vision_width, vision_patch_size, |
|
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, load_from_clip |
|
) |
|
|
|
convert_weights(model) |
|
return model.eval() |
|
|