File size: 2,139 Bytes
dbce128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b27c5
 
 
 
dbce128
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
language: 
- ar
- dz

tags:
- pytorch
- bert
- multilingual
- ar
- dz

license: apache-2.0

widget:
- text: " أنا من الجزائر من ولاية [MASK] "
- text: "rabi [MASK] khouya sami"
- text: " ربي [MASK] خويا لعزيز"
- text: "tahya el [MASK]."
- text: "rouhi ya dzayer [MASK]"

inference: true
---

<img src="https://raw.githubusercontent.com/alger-ia/dziribert/main/dziribert_drawing.png" alt="drawing" width="25%" height="25%" align="right"/>


# DziriBERT


DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian text contents written using both Arabic and Latin characters. It sets new state of the art results on Algerian text classification datasets, even if it has been pre-trained on much less data (~1 million tweets).

For more information, please visit our paper: https://arxiv.org/pdf/2109.12346.pdf.

## How to use

```python
from transformers import BertTokenizer, BertForMaskedLM

tokenizer = BertTokenizer.from_pretrained("alger-ia/dziribert")
model = BertForMaskedLM.from_pretrained("alger-ia/dziribert")

```

You can find a fine-tuning script in our Github repo: https://github.com/alger-ia/dziribert

## Limitations

The pre-training data used in this project comes from social media (Twitter). Therefore, the Masked Language Modeling objective may predict offensive words in some situations. Modeling this kind of words may be either an advantage (e.g. when training a hate speech model) or a disadvantage (e.g. when generating answers that are directly sent to the end user). Depending on your downstream task, you may need to filter out such words especially when returning automatically generated text to the end user. 

### How to cite

```bibtex
@article{dziribert,
  title={DziriBERT: a Pre-trained Language Model for the Algerian Dialect},
  author={Abdaoui, Amine and Berrimi, Mohamed and Oussalah, Mourad and Moussaoui, Abdelouahab},
  journal={arXiv preprint arXiv:2109.12346},
  year={2021}
}
```

## Contact 

Please contact [email protected] for any question, feedback or request.