--- license: mit base_model: alexdg19/bert_large_xsum_samsum tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: bert_large_xsum_samsum3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 0.5313 --- # bert_large_xsum_samsum3 This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum](https://huggingface.co./alexdg19/bert_large_xsum_samsum) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2354 - Rouge1: 0.5313 - Rouge2: 0.2827 - Rougel: 0.4367 - Rougelsum: 0.4357 - Gen Len: 30.939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 164 | 1.1370 | 0.5599 | 0.3246 | 0.4748 | 0.4743 | 29.0122 | | No log | 2.0 | 328 | 1.2659 | 0.5494 | 0.3033 | 0.4623 | 0.4612 | 27.0671 | | No log | 3.0 | 492 | 1.4188 | 0.5198 | 0.2726 | 0.436 | 0.4346 | 28.6768 | | 0.6603 | 4.0 | 656 | 1.5628 | 0.5391 | 0.2905 | 0.4555 | 0.4553 | 28.6159 | | 0.6603 | 5.0 | 820 | 1.9045 | 0.5237 | 0.2774 | 0.4326 | 0.4321 | 31.5854 | | 0.6603 | 6.0 | 984 | 2.0670 | 0.5199 | 0.2689 | 0.4251 | 0.4243 | 31.8049 | | 0.1722 | 7.0 | 1148 | 1.9653 | 0.5269 | 0.2703 | 0.4342 | 0.4333 | 28.5122 | | 0.1722 | 8.0 | 1312 | 2.1921 | 0.5296 | 0.2765 | 0.4393 | 0.4387 | 31.8354 | | 0.1722 | 9.0 | 1476 | 2.4336 | 0.5299 | 0.2825 | 0.4399 | 0.4388 | 31.7988 | | 0.052 | 10.0 | 1640 | 2.2354 | 0.5313 | 0.2827 | 0.4367 | 0.4357 | 30.939 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1