--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: bert_large_xsum_samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 0.5083 --- # bert_large_xsum_samsum This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.9030 - Rouge1: 0.5083 - Rouge2: 0.2528 - Rougel: 0.41 - Rougelsum: 0.4105 - Gen Len: 29.0183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 41 | 1.6008 | 0.4779 | 0.2349 | 0.4058 | 0.4056 | 21.1037 | | No log | 2.0 | 82 | 1.5804 | 0.5104 | 0.2526 | 0.4242 | 0.4239 | 24.689 | | No log | 3.0 | 123 | 1.7310 | 0.5148 | 0.253 | 0.4162 | 0.4155 | 28.0793 | | No log | 4.0 | 164 | 1.7974 | 0.5019 | 0.2443 | 0.4127 | 0.4125 | 25.189 | | No log | 5.0 | 205 | 1.9030 | 0.5083 | 0.2528 | 0.41 | 0.4105 | 29.0183 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1