--- license: mit base_model: alexdg19/bert_large_xsum_samsum2 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: bert_large_cnn_daily results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 0.4251 --- # bert_large_cnn_daily This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum2](https://huggingface.co./alexdg19/bert_large_xsum_samsum2) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.7065 - Rouge1: 0.4251 - Rouge2: 0.2024 - Rougel: 0.2992 - Rougelsum: 0.3961 - Gen Len: 60.6232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.6632 | 1.0 | 1021 | 1.6262 | 0.4191 | 0.1992 | 0.2957 | 0.39 | 60.6205 | | 1.3734 | 2.0 | 2042 | 1.6078 | 0.4253 | 0.2046 | 0.3009 | 0.397 | 61.0692 | | 1.1497 | 3.0 | 3064 | 1.6759 | 0.4254 | 0.2033 | 0.2998 | 0.3967 | 60.8555 | | 1.0123 | 4.0 | 4084 | 1.7065 | 0.4251 | 0.2024 | 0.2992 | 0.3961 | 60.6232 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1