alexandreteles commited on
Commit
f9edd10
·
verified ·
1 Parent(s): 65e37fa

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - BatsResearch/ctga-v1
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ pipeline_tag: text2text-generation
8
+ tags:
9
+ - data generation
10
+ ---
11
+
12
+ # Bonito-v1 GGUF
13
+
14
+ You can find the original model at [BatsResearch/bonito-v1](https://huggingface.co/BatsResearch/bonito-v1)
15
+
16
+ ## Variations
17
+
18
+ | Name | Quant method | Bits |
19
+ | ---- | ---- | ---- |
20
+ | [bonito-v1_iq4_nl.gguf](https://huggingface.co/alexandreteles/bonito-v1-gguf/blob/main/bonito-v1_iq4_nl.gguf) | IQ4_NL | 4 | 4.16 GB|
21
+ | [bonito-v1_q4_k_m.gguf](https://huggingface.co/alexandreteles/bonito-v1-gguf/blob/main/bonito-v1_q4_k_m.gguf) | Q4_K_M | 4 | 4.37 GB|
22
+ | [bonito-v1_q5_k_2.gguf](https://huggingface.co/alexandreteles/bonito-v1-gguf/blob/main/bonito-v1_q5_k_s.gguf) | Q5_K_S | 5 | 5.00 GB|
23
+ | [bonito-v1_q5_k_m.gguf](https://huggingface.co/alexandreteles/bonito-v1-gguf/blob/main/bonito-v1_q5_k_m.gguf) | Q5_K_M | 5 | 5.13 GB|
24
+ | [bonito-v1_q6_k.gguf](https://huggingface.co/alexandreteles/bonito-v1-gguf/blob/main/bonito-v1_q6_k.gguf) | Q6_K | 6 | 5.94 GB|
25
+ | [bonito-v1_q8_0.gguf](https://huggingface.co/alexandreteles/bonito-v1-gguf/blob/main/bonito-v1_q8_0.gguf) | Q8_0 | 8 | 7.70 GB|
26
+ | [bonito-v1_f16.gguf](https://huggingface.co/alexandreteles/bonito-v1-gguf/blob/main/bonito-v1_f16.gguf) | FP16 | 16 | 14.5 GB|
27
+
28
+ ## Model Card for bonito
29
+
30
+ <!-- Provide a quick summary of what the model is/does. -->
31
+
32
+ Bonito is an open-source model for conditional task generation: the task of converting unannotated text into task-specific training datasets for instruction tuning.
33
+
34
+ ![Bonito](https://raw.githubusercontent.com/BatsResearch/bonito/main/assets/workflow.jpg)
35
+
36
+ ## Model Details
37
+
38
+ ### Model Description
39
+
40
+ <!-- Provide a longer summary of what this model is. -->
41
+
42
+ Bonito can be used to create synthetic instruction tuning datasets to adapt large language models on users' specialized, private data.
43
+ In our [paper](https://github.com/BatsResearch/bonito), we show that Bonito can be used to adapt both pretrained and instruction tuned models to tasks without any annotations.
44
+
45
+ - **Developed by:** Nihal V. Nayak, Yiyang Nan, Avi Trost, and Stephen H. Bach
46
+ - **Model type:** MistralForCausalLM
47
+ - **Language(s) (NLP):** English
48
+ - **License:** TBD
49
+ - **Finetuned from model:** `mistralai/Mistral-7B-v0.1`
50
+
51
+ ### Model Sources
52
+
53
+ <!-- Provide the basic links for the model. -->
54
+
55
+ - **Repository:** [https://github.com/BatsResearch/bonito](https://github.com/BatsResearch/bonito)
56
+ - **Paper:** Arxiv link
57
+
58
+ ## Uses
59
+
60
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
61
+
62
+ ### Direct Use
63
+
64
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
65
+ To easily generate synthetic instruction tuning datasets, we recommend using the [bonito](https://github.com/BatsResearch/bonito) package built using the `transformers` and the `vllm` libraries.
66
+
67
+ ```python
68
+ from bonito import Bonito, SamplingParams
69
+ from datasets import load_dataset
70
+
71
+ # Initialize the Bonito model
72
+ bonito = Bonito()
73
+
74
+ # load dataaset with unannotated text
75
+ unannotated_text = load_dataset(
76
+ "BatsResearch/bonito-experiment",
77
+ "unannotated_contract_nli"
78
+ )["train"].select(range(10))
79
+
80
+ # Generate synthetic instruction tuning dataset
81
+ sampling_params = SamplingParams(max_tokens=256, top_p=0.95, temperature=0.5, n=1)
82
+ synthetic_dataset = bonito.generate_tasks(
83
+ unannotated_text,
84
+ context_col="input",
85
+ task_type="nli",
86
+ sampling_params=sampling_params
87
+ )
88
+ ```
89
+
90
+
91
+ ### Out-of-Scope Use
92
+
93
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
94
+
95
+ Our model is trained to generate the following task types: summarization, sentiment analysis, multiple-choice question answering, extractive question answering, topic classification, natural language inference, question generation, text generation, question answering without choices, paraphrase identification, sentence completion, yes-no question answering, word sense disambiguation, paraphrase generation, textual entailment, and
96
+ coreference resolution.
97
+ The model might not produce accurate synthetic tasks beyond these task types.