--- language: - da license: apache-2.0 tags: - generated_from_trainer datasets: - ajders/ddisco metrics: - accuracy base_model: NbAiLab/nb-bert-base model-index: - name: ddisco_classifier results: [] --- # da-discourse-coherence-base This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co./NbAiLab/nb-bert-base) on the [DDisco](https://huggingface.co./datasets/ajders/ddisco) dataset. It achieves the following results on the evaluation set: - Loss: 0.7487 - Accuracy: 0.6915 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 703 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3422 | 0.4 | 5 | 1.0166 | 0.5721 | | 0.9645 | 0.8 | 10 | 0.8966 | 0.5721 | | 0.9854 | 1.24 | 15 | 0.8499 | 0.5721 | | 0.8628 | 1.64 | 20 | 0.8379 | 0.6517 | | 0.9046 | 2.08 | 25 | 0.8228 | 0.5721 | | 0.8361 | 2.48 | 30 | 0.7980 | 0.5821 | | 0.8158 | 2.88 | 35 | 0.8095 | 0.5821 | | 0.8689 | 3.32 | 40 | 0.7989 | 0.6169 | | 0.8125 | 3.72 | 45 | 0.7730 | 0.6965 | | 0.843 | 4.16 | 50 | 0.7566 | 0.6418 | | 0.7421 | 4.56 | 55 | 0.7840 | 0.6517 | | 0.7949 | 4.96 | 60 | 0.7531 | 0.6915 | | 0.828 | 5.4 | 65 | 0.7464 | 0.6816 | | 0.7438 | 5.8 | 70 | 0.7487 | 0.6915 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.0a0+d0d6b1f - Datasets 2.9.0 - Tokenizers 0.13.2 ### Contributor [ajders](https://github.com/AJDERS)