---
base_model: t-bank-ai/T-lite-instruct-0.1
library_name: peft
tags:
- generated_from_trainer
model-index:
- name: t-lite-stalin
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: t-bank-ai/T-lite-instruct-0.1
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: test.jsonl
type: completion
dataset_prepared_path: prepared_data_tlite
val_set_size: 0.1
output_dir: ./t-lite-stalin
adapter: qlora
lora_model_dir:
sequence_len: 272
sample_packing: true
eval_sample_packing: False
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 48
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 1000
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|eot_id|>
```
# t-lite-stalin
This model is a fine-tuned version of [t-bank-ai/T-lite-instruct-0.1](https://huggingface.co./t-bank-ai/T-lite-instruct-0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.4388 | 0.0167 | 1 | 2.2736 |
| 1.7178 | 0.9874 | 59 | 1.7366 |
| 1.5568 | 1.9582 | 118 | 1.7031 |
| 1.4787 | 2.9289 | 177 | 1.7109 |
| 1.4473 | 3.8996 | 236 | 1.7248 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1