--- base_model: t-bank-ai/T-lite-instruct-0.1 library_name: peft tags: - generated_from_trainer model-index: - name: t-lite-stalin results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: t-bank-ai/T-lite-instruct-0.1 load_in_8bit: false load_in_4bit: true strict: false datasets: - path: test.jsonl type: completion dataset_prepared_path: prepared_data_tlite val_set_size: 0.1 output_dir: ./t-lite-stalin adapter: qlora lora_model_dir: sequence_len: 272 sample_packing: true eval_sample_packing: False pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 48 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 1 eval_table_size: eval_max_new_tokens: 1000 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|eot_id|> ```

# t-lite-stalin This model is a fine-tuned version of [t-bank-ai/T-lite-instruct-0.1](https://huggingface.co./t-bank-ai/T-lite-instruct-0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4388 | 0.0167 | 1 | 2.2736 | | 1.7178 | 0.9874 | 59 | 1.7366 | | 1.5568 | 1.9582 | 118 | 1.7031 | | 1.4787 | 2.9289 | 177 | 1.7109 | | 1.4473 | 3.8996 | 236 | 1.7248 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1