--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7229 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0671 | 1.0 | 450 | 0.6674 | 0.77 | | 2.0161 | 2.0 | 900 | 0.6465 | 0.81 | | 0.6629 | 3.0 | 1350 | 1.5574 | 0.72 | | 0.0792 | 4.0 | 1800 | 0.7004 | 0.85 | | 0.0437 | 5.0 | 2250 | 0.8645 | 0.86 | | 0.0 | 6.0 | 2700 | 1.0612 | 0.88 | | 0.8016 | 7.0 | 3150 | 0.7086 | 0.87 | | 0.0 | 8.0 | 3600 | 0.7586 | 0.88 | | 0.0 | 9.0 | 4050 | 0.7274 | 0.88 | | 0.0 | 10.0 | 4500 | 0.7229 | 0.88 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3