File size: 19,620 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pairwise style dataset."""
import os
import time
import numpy as np
import torch
from megatron import mpu, print_rank_0
class PairwiseDataset(torch.utils.data.Dataset):
def __init__(
self,
name,
pos_data_prefix, # Don't need neg since it's assumed you have paired the data already.
documents,
pos_indexed_dataset,
neg_indexed_dataset,
num_samples,
seq_length,
seed,
pack_impl="unpacked",
build_index_mappings=True,
use_shared_fs=True,
pos_label_dataset=None,
pos_ref_dataset=None,
neg_label_dataset=None,
neg_ref_dataset=None,
allow_chopped=True,
):
self.name = name
self.pos_indexed_dataset = pos_indexed_dataset
self.pos_label_dataset = pos_label_dataset
self.pos_ref_dataset = pos_ref_dataset
self.neg_indexed_dataset = neg_indexed_dataset
self.neg_label_dataset = neg_label_dataset
self.neg_ref_dataset = neg_ref_dataset
self.pack_impl = pack_impl
self.seq_length = seq_length
# Checks
assert np.min(documents) >= 0
assert (neg_label_dataset is not None and pos_label_dataset is not None) or (
neg_label_dataset is None and pos_label_dataset is None
), "Label datasets must be both None or both not None"
assert np.max(documents) < pos_indexed_dataset.sizes.shape[0]
assert pos_indexed_dataset.sizes.shape[0] == neg_indexed_dataset.sizes.shape[0]
assert (
pack_impl != "packed"
), "Packed implementation not supported for pairwise dataset"
if build_index_mappings:
# Build index mappings.
self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings(
self.name,
pos_data_prefix,
documents,
self.pos_indexed_dataset.sizes,
self.neg_indexed_dataset.sizes,
self.pos_label_dataset,
self.neg_label_dataset,
num_samples,
seq_length,
seed,
pack_impl,
use_shared_fs=use_shared_fs,
allow_chopped=allow_chopped,
)
self.shuffle_idx_len = self.shuffle_idx.shape[0] - 1
self.sample_idx_len = self.sample_idx.shape[0] - 1
if self.shuffle_idx_len != self.sample_idx_len - 1:
print(
f"WARNING: shuffle index length ({self.shuffle_idx_len}) is not equal to sample index length ({self.sample_idx_len})"
)
def __len__(self):
return min(self.shuffle_idx_len, self.sample_idx_len)
def __getitem__(self, idx):
try:
# Get the shuffled index.
idx = self.shuffle_idx[idx]
# Start and end documents and offsets.
doc_index_f = self.sample_idx[idx][0]
doc_index_l = self.sample_idx[idx + 1][0]
offset_f = self.sample_idx[idx][1]
offset_l = self.sample_idx[idx + 1][1]
# Labels and texts are supposed to be fully in sync.
datasets = [self.pos_indexed_dataset, self.neg_indexed_dataset]
if self.pos_label_dataset is not None:
datasets += [
self.pos_label_dataset,
self.neg_label_dataset,
]
if self.pos_ref_dataset is not None:
datasets += [
self.pos_ref_dataset,
self.neg_ref_dataset,
]
samples = []
pos_ref_samples = []
neg_ref_samples = []
# If we are within the same document, just extract the chunk.
for n, dataset in enumerate(datasets):
if doc_index_f == doc_index_l:
samples.append(
dataset.get(
self.doc_idx[doc_index_f],
offset=offset_f,
length=offset_l - offset_f + 1,
)
)
else:
# Otherwise, get the rest of the initial document.
sample_list = [
dataset.get(self.doc_idx[doc_index_f], offset=offset_f)
]
# Loop over all in between documents and add the entire document.
for i in range(doc_index_f + 1, doc_index_l):
sample_list.append(dataset.get(self.doc_idx[i]))
# And finally add the relevant portion of last document.
sample_list.append(
dataset.get(self.doc_idx[doc_index_l], length=offset_l + 1)
)
samples.append(np.concatenate(sample_list))
for i in range(len(samples)):
if len(samples[i]) < (self.seq_length + 1):
if ((i == 2) or (i == 3)) and self.pos_label_dataset is not None:
# Labels... So pad with -100
samples[i] = np.pad(
samples[i],
(0, (self.seq_length + 1) - len(samples[i])),
mode="constant",
constant_values=-100,
)
else:
# Pad with 0s, can use any number since it's masked.
samples[i] = np.pad(
samples[i],
(0, (self.seq_length + 1) - len(samples[i])),
mode="constant",
constant_values=0,
)
elif len(samples[i]) > (self.seq_length + 1):
# Check for overflow and truncate.
samples[i] = samples[i][: (self.seq_length + 1)]
ret = {}
ret["pos"] = np.array(samples[0], dtype=np.int64)
ret["neg"] = np.array(samples[1], dtype=np.int64)
if self.pos_label_dataset is not None:
ret["pos_label"] = np.array(samples[2], dtype=np.int64)
ret["neg_label"] = np.array(samples[3], dtype=np.int64)
if self.pos_ref_dataset is not None:
ret["pos_ref"] = np.array(samples[4], dtype=np.float32)
ret["neg_ref"] = np.array(samples[5], dtype=np.float32)
elif self.pos_ref_dataset is not None:
# Don't have labels...
ret["pos_ref"] = np.array(samples[2], dtype=np.float32)
ret["neg_ref"] = np.array(samples[3], dtype=np.float32)
return ret
except IndexError:
new_idx = idx % len(self)
print(
f"WARNING: Got index out of bounds error with index {idx} - taking modulo of index instead ({new_idx})"
)
return self[new_idx]
def _build_index_mappings(
name,
pos_data_prefix,
documents,
pos_sizes,
neg_sizes,
pos_label_dataset,
neg_label_dataset,
num_samples,
seq_length,
seed,
packing_impl,
use_shared_fs=True,
allow_chopped=True,
):
"""Build doc-idx, sample-idx, and shuffle-idx.
doc-idx: is an array (ordered) of documents to be used in training.
sample-idx: is the start document index and document offset for each
training sample.
shuffle-idx: maps the sample index into a random index into sample-idx.
"""
# Number of tokens in each epoch and number of required epochs.
tokens_per_epoch = _num_tokens(documents, pos_sizes)
num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
# rng state
np_rng = np.random.RandomState(seed=seed)
# Filename of the index mappings.
_filename = pos_data_prefix
_filename += "_{}_indexmap".format(name)
_filename += "_{}ns".format(num_samples)
_filename += "_{}sl".format(seq_length)
_filename += "_{}s".format(seed)
_filename += "_{}pi".format(packing_impl)
doc_idx_filename = _filename + "_doc_idx.npy"
sample_idx_filename = _filename + "_sample_idx.npy"
shuffle_idx_filename = _filename + "_shuffle_idx.npy"
if not use_shared_fs:
should_process_dataset = int(os.environ["LOCAL_RANK"]) == 0
else:
should_process_dataset = torch.distributed.get_rank() == 0
# Build the indexed mapping if not exist.
if should_process_dataset:
if (
(not os.path.isfile(doc_idx_filename))
or (not os.path.isfile(sample_idx_filename))
or (not os.path.isfile(shuffle_idx_filename))
):
print_rank_0(
" > WARNING: could not find index map files, building "
"the indices on rank 0 ..."
)
# doc-idx.
start_time = time.time()
if packing_impl == "pack_until_overflow":
# Naively pack data until it overflows, then roll it over to a new one instead.
shuffle_idx = np.arange(num_samples) # Shuffle index around epochs
np_rng.shuffle(shuffle_idx)
sample_idx = []
doc_idx = []
# Iterate over files until we have enough samples.
temp_shuffle_idx = np.arange(len(documents))
np_rng.shuffle(temp_shuffle_idx)
running_length = 0
curr_shuffle_idx = 0
while len(sample_idx) < num_samples:
# If not allow_chopped, skip this item if it's chopped.
if not allow_chopped:
if (
pos_sizes[temp_shuffle_idx[curr_shuffle_idx]]
< seq_length + 1
):
curr_shuffle_idx += 1
continue
if (
neg_sizes[temp_shuffle_idx[curr_shuffle_idx]]
< seq_length + 1
):
curr_shuffle_idx += 1
continue
# Then, check if we need to skip this item...
if pos_label_dataset is not None:
if np.all(
pos_label_dataset.get(temp_shuffle_idx[curr_shuffle_idx])[
: seq_length + 1
]
== -100
):
curr_shuffle_idx += 1
continue
if np.all(
neg_label_dataset.get(temp_shuffle_idx[curr_shuffle_idx])[
: seq_length + 1
]
== -100
):
curr_shuffle_idx += 1
continue
doc_length = max(
pos_sizes[temp_shuffle_idx[curr_shuffle_idx]],
neg_sizes[temp_shuffle_idx[curr_shuffle_idx]],
)
if running_length == 0:
sample_idx.append(np.array([len(doc_idx), 0]))
doc_idx.append(temp_shuffle_idx[curr_shuffle_idx])
running_length += doc_length
else:
if running_length + doc_length > (seq_length + 1):
running_length = doc_length
sample_idx.append(np.array([len(doc_idx), 0]))
else:
running_length += doc_length
doc_idx.append(temp_shuffle_idx[curr_shuffle_idx])
curr_shuffle_idx += 1
if curr_shuffle_idx == len(documents):
curr_shuffle_idx = 0
np_rng.shuffle(temp_shuffle_idx)
sample_idx.append(np.array([len(doc_idx), 0]))
np.save(doc_idx_filename, doc_idx, allow_pickle=True)
np.save(sample_idx_filename, sample_idx, allow_pickle=True)
np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
elif packing_impl == "unpacked":
# Unpacked data, one sample per document.
shuffle_idx = np.array([i % len(documents) for i in range(num_samples)])
np_rng.shuffle(shuffle_idx)
sample_idx = np.zeros((num_samples + 1, 2), dtype=np.int64)
sample_idx[:, 0] = np.array([i for i in range(num_samples + 1)])
sample_idx[:, 1] = 0
doc_idx = list()
doc_i = 0
while len(doc_idx) <= num_samples:
# Check if we need to skip this item...
if not allow_chopped:
# +1 since we shift left/right by 1
if pos_sizes[doc_i] > seq_length + 1:
doc_i = (doc_i + 1) % len(documents)
continue
if neg_sizes[doc_i] > seq_length + 1:
doc_i = (doc_i + 1) % len(documents)
continue
# In theory if we don't allow chopped we should be able to skip it, but the warm fuzzies I get
# from this are worth the extra bool check
if np.all(pos_label_dataset.get(doc_i)[:seq_length] == -100):
doc_i = (doc_i + 1) % len(documents)
continue
if np.all(neg_label_dataset.get(doc_i)[:seq_length] == -100):
doc_i = (doc_i + 1) % len(documents)
continue
doc_idx.append(doc_i)
doc_i = (doc_i + 1) % len(documents)
np.save(doc_idx_filename, doc_idx, allow_pickle=True)
np.save(sample_idx_filename, sample_idx, allow_pickle=True)
np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
# This should be a barrier but nccl barrier assumes
# device_index=rank which is not the case for model
# parallel case
counts = torch.cuda.LongTensor([1])
torch.distributed.all_reduce(counts, group=mpu.get_io_parallel_group())
assert counts[0].item() == torch.distributed.get_world_size(
group=mpu.get_io_parallel_group()
)
# Load mappings.
start_time = time.time()
print_rank_0(" > loading doc-idx mapping from {}".format(doc_idx_filename))
doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode="r")
print_rank_0(" > loading sample-idx mapping from {}".format(sample_idx_filename))
sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode="r")
print_rank_0(" > loading shuffle-idx mapping from {}".format(shuffle_idx_filename))
shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode="r")
print_rank_0(
" loaded indexed file in {:3.3f} seconds".format(time.time() - start_time)
)
print_rank_0(" total number of samples: {}".format(sample_idx.shape[0]))
print_rank_0(" total number of epochs: {}".format(num_epochs))
return doc_idx, sample_idx, shuffle_idx
def _num_tokens(documents, sizes):
"""Total number of tokens in the dataset."""
return np.sum(sizes[documents])
def _num_epochs(tokens_per_epoch, seq_length, num_samples):
"""Based on number of samples and sequence length, calculate how many
epochs will be needed."""
num_epochs = 0
total_tokens = 0
while True:
num_epochs += 1
total_tokens += tokens_per_epoch
# -1 is because we need to retrieve seq_length + 1 token each time
# but the last token will overlap with the first token of the next
# sample except for the last sample.
if ((total_tokens - 1) // seq_length) >= num_samples:
return num_epochs
def _build_doc_idx(documents, num_epochs, np_rng):
"""Build an array with length = number-of-epochs * number-of-documents.
Each index is mapped to a corresponding document."""
doc_idx = np.mgrid[0:num_epochs, 0 : len(documents)][1]
doc_idx[:] = documents
doc_idx = doc_idx.reshape(-1)
doc_idx = doc_idx.astype(np.int32)
np_rng.shuffle(doc_idx)
return doc_idx
def _build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch):
"""Sample index mapping is a 2D array with sizes
[number-of-samples + 1, 2] where [..., 0] contains
the index into `doc_idx` and [..., 1] is the
starting offset in that document."""
# Total number of samples. For -1 see comments in `_num_epochs`.
num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length
sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int64)
# Index into sample_idx.
sample_index = 0
# Index into doc_idx.
doc_idx_index = 0
# Beginning offset for each document.
doc_offset = 0
# Start with first document and no offset.
sample_idx[sample_index][0] = doc_idx_index
sample_idx[sample_index][1] = doc_offset
sample_index += 1
while sample_index <= num_samples:
# Start with a fresh sequence.
remaining_seq_length = seq_length + 1
while remaining_seq_length != 0:
# Get the document length.
doc_id = doc_idx[doc_idx_index]
doc_length = sizes[doc_id] - doc_offset
# And add it to the current sequence.
remaining_seq_length -= doc_length
# If we have more than a full sequence, adjust offset and set
# remaining length to zero so we return from the while loop.
# Note that -1 here is for the same reason we have -1 in
# `_num_epochs` calculations.
if remaining_seq_length <= 0:
doc_offset += remaining_seq_length + doc_length - 1
remaining_seq_length = 0
else:
# Otherwise, start from the beginning of the next document.
doc_idx_index += 1
doc_offset = 0
# Record the sequence.
sample_idx[sample_index][0] = doc_idx_index
sample_idx[sample_index][1] = doc_offset
sample_index += 1
return sample_idx
def _build_shuffle_idx(size, np_rng):
"""Build the range [0, size) and shuffle."""
dtype_ = np.uint32
if size >= (np.iinfo(np.uint32).max - 1):
dtype_ = np.int64
shuffle_idx = np.arange(start=0, stop=size, step=1, dtype=dtype_)
np_rng.shuffle(shuffle_idx)
return shuffle_idx
|