ColPali
Safetensors
English
paligemma
vidore
akshayballal commited on
Commit
1bf4368
·
verified ·
1 Parent(s): 9f32fe9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -157
README.md CHANGED
@@ -1,199 +1,157 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
61
 
62
- [More Information Needed]
 
 
 
 
 
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
 
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
  [More Information Needed]
 
1
  ---
2
+ tags:
3
+ - colpali
4
+ - vidore
5
+ license: mit
6
+ datasets:
7
+ - vidore/colpali_train_set
8
+ language:
9
+ - en
10
+ base_model:
11
+ - google/paligemma-3b-mix-448
12
  ---
13
 
14
  # Model Card for Model ID
15
 
16
+ This is merged version of the Colpali adapter merged with base google/google/paligemma-3b-mix-448. This merge makes it easy to use with frameworks like candle that don't support LoRA adapters out-of-the-box.
17
 
18
+ # ColPali: Visual Retriever based on PaliGemma-3B with ColBERT strategy
19
 
20
+ ColPali is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
21
+ It is a [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
22
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
23
 
24
+ <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
25
 
26
+ ## Model Description
27
 
28
+ This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
29
+ We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
30
 
31
+ One benefit of inputting image patch embeddings through a language model is that they are natively mapped to a latent space similar to textual input (query).
32
+ This enables leveraging the [ColBERT](https://arxiv.org/abs/2004.12832) strategy to compute interactions between text tokens and image patches, which enables a step-change improvement in performance compared to BiPali.
33
 
34
+ ## Model Training
 
 
 
 
 
 
35
 
36
+ ### Dataset
37
+ Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
38
+ Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
39
+ A validation set is created with 2% of the samples to tune hyperparameters.
40
 
41
+ *Note: Multilingual data is present in the pretraining corpus of the language model (Gemma-2B) and potentially occurs during PaliGemma-3B's multimodal training.*
42
 
43
+ ### Parameters
 
 
44
 
45
+ All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
46
+ with `alpha=32` and `r=32` on the transformer layers from the language model,
47
+ as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
48
+ We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
49
 
50
+ ## Usage
51
 
52
+ ### For best performance, newer models are available (vidore/colpali-v1.2)
53
 
 
54
 
55
+ ```bash
56
+ # This model checkpoint is compatible with version 0.1.1, but not more recent versions of the inference lib
57
+ pip install colpali_engine==0.1.1
58
+ ```
59
 
60
+ ```python
61
+ import torch
62
+ import typer
63
+ from torch.utils.data import DataLoader
64
+ from tqdm import tqdm
65
+ from transformers import AutoProcessor
66
+ from PIL import Image
67
 
68
+ from colpali_engine.models.paligemma_colbert_architecture import ColPali
69
+ from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
70
+ from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
71
+ from colpali_engine.utils.image_from_page_utils import load_from_dataset
72
 
 
73
 
74
+ def main() -> None:
75
+ """Example script to run inference with ColPali"""
76
 
77
+ # Load model
78
+ model_name = "akshayballal/colpali-merged"
79
+ model = ColPali.from_pretrained("google/colpaligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
80
+ processor = AutoProcessor.from_pretrained(model_name)
81
 
82
+ # select images -> load_from_pdf(<pdf_path>), load_from_image_urls(["<url_1>"]), load_from_dataset(<path>)
83
+ images = load_from_dataset("vidore/docvqa_test_subsampled")
84
+ queries = ["From which university does James V. Fiorca come ?", "Who is the japanese prime minister?"]
85
 
86
+ # run inference - docs
87
+ dataloader = DataLoader(
88
+ images,
89
+ batch_size=4,
90
+ shuffle=False,
91
+ collate_fn=lambda x: process_images(processor, x),
92
+ )
93
+ ds = []
94
+ for batch_doc in tqdm(dataloader):
95
+ with torch.no_grad():
96
+ batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
97
+ embeddings_doc = model(**batch_doc)
98
+ ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
99
 
100
+ # run inference - queries
101
+ dataloader = DataLoader(
102
+ queries,
103
+ batch_size=4,
104
+ shuffle=False,
105
+ collate_fn=lambda x: process_queries(processor, x, Image.new("RGB", (448, 448), (255, 255, 255))),
106
+ )
107
 
108
+ qs = []
109
+ for batch_query in dataloader:
110
+ with torch.no_grad():
111
+ batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
112
+ embeddings_query = model(**batch_query)
113
+ qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
114
 
115
+ # run evaluation
116
+ retriever_evaluator = CustomEvaluator(is_multi_vector=True)
117
+ scores = retriever_evaluator.evaluate(qs, ds)
118
+ print(scores.argmax(axis=1))
119
 
 
120
 
121
+ if __name__ == "__main__":
122
+ typer.run(main)
123
 
124
+ ```
125
 
126
+ ## Limitations
127
 
128
+ - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
129
+ - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
130
 
131
+ ## License
132
 
133
+ ColPali's vision language backbone model (PaliGemma) is under `gemma` license as specified in its [model card](https://huggingface.co/google/paligemma-3b-mix-448). The adapters attached to the model are under MIT license.
134
 
135
+ ## Contact
136
+
137
+ - Manuel Faysse: [email protected]
138
+ - Hugues Sibille: [email protected]
139
+ - Tony Wu: [email protected]
140
 
141
+ ## Citation
142
 
143
+ If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
144
+
145
+ ```bibtex
146
+ @misc{faysse2024colpaliefficientdocumentretrieval,
147
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
148
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
149
+ year={2024},
150
+ eprint={2407.01449},
151
+ archivePrefix={arXiv},
152
+ primaryClass={cs.IR},
153
+ url={https://arxiv.org/abs/2407.01449},
154
+ }
155
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
  [More Information Needed]