File size: 9,835 Bytes
0ff6652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f9bb9
 
0ff6652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f9bb9
0ff6652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f9bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff6652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
tags:
- llama-3.1
- conversational
- instruction following
- reasoning
- function calling
license: llama3.1
base_model: akjindal53244/Llama-3.1-Storm-8B
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg)

Authors: [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Pawan Kumar Rajpoot](https://www.linkedin.com/in/pawanrajpoot/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Akshita Sukhlecha](https://www.linkedin.com/in/akshita-sukhlecha/)

**πŸ€— Hugging Face Announcement Blog**: https://huggingface.co./blog/akjindal53244/llama31-storm8b

**πŸš€Ollama:** `ollama run ajindal/llama3.1-storm:8b`

<br>

# Llama-3.1-Storm-8B-GGUF
**This is the GGUF quantized version of [Llama-3.1-Storm-8B](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B), for use with [llama.cpp](https://github.com/ggerganov/llama.cpp). BF16 Model [here](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B)**

## TL;DR
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/mDtDeiHwnBupw1k_n99Lf.png)

We present the [**Llama-3.1-Storm-8B**](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) model that outperforms Meta AI's [Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) and [Hermes-3-Llama-3.1-8B](https://huggingface.co./NousResearch/Hermes-3-Llama-3.1-8B) models significantly across diverse benchmarks as shown in the performance comparison plot in the next section. Our approach consists of three key steps:
1. **Self-Curation**: We applied two self-curation methods to select approximately 1 million high-quality examples from a pool of ~2.8 million open-source examples. **Our curation criteria focused on educational value and difficulty level, using the same SLM for annotation instead of larger models (e.g. 70B, 405B).**
2. **Targeted fine-tuning**: We performed [Spectrum](https://arxiv.org/abs/2406.06623)-based targeted fine-tuning over the Llama-3.1-8B-Instruct model. The Spectrum method accelerates training by selectively targeting layer modules based on their signal-to-noise ratio (SNR), and freezing the remaining modules. In our work, 50% of layers are frozen.
3. **Model Merging**: We merged our fine-tuned model with the [Llama-Spark](https://huggingface.co./arcee-ai/Llama-Spark) model using [SLERP](https://huggingface.co./blog/mlabonne/merge-models#1-slerp) method. The merging method produces a blended model with characteristics smoothly interpolated from both parent models, ensuring the resultant model captures the essence of both its parents. [Llama-3.1-Storm-8B](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) improves Llama-3.1-8B-Instruct across 10 diverse benchmarks. These benchmarks cover areas such as instruction-following, knowledge-driven QA, reasoning, truthful answer generation, and function calling.

## πŸ† Introducing Llama-3.1-Storm-8B
[**Llama-3.1-Storm-8B**](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) builds upon the foundation of Llama-3.1-8B-Instruct, aiming to enhance both conversational and function calling capabilities within the 8B parameter model class.

As shown in the left subplot of the above figure, [**Llama-3.1-Storm-8B**](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) model improves Meta-Llama-3.1-8B-Instruct across various benchmarks - Instruction-following ([IFEval](https://arxiv.org/abs/2311.07911)), Knowledge-driven QA benchmarks ([GPQA](https://arxiv.org/abs/2311.12022), [MMLU-Pro](https://arxiv.org/pdf/2406.01574)), Reasoning ([ARC-C](https://arxiv.org/abs/1803.05457), [MuSR](https://arxiv.org/abs/2310.16049), [BBH](https://arxiv.org/pdf/2210.09261)), Reduced Hallucinations ([TruthfulQA](https://arxiv.org/abs/2109.07958)), and Function-Calling ([BFCL](https://huggingface.co./datasets/gorilla-llm/Berkeley-Function-Calling-Leaderboard)). This improvement is particularly significant for AI developers and enthusiasts who work with limited computational resources.

We also benchmarked our model with the recently published model [Hermes-3-Llama-3.1-8B](https://huggingface.co./NousResearch/Hermes-3-Llama-3.1-8B) built on top of the Llama-3.1-8B-Instruct model. As shown in the right subplot of the above figure, **Llama-3.1-Storm-8B outperforms Hermes-3-Llama-3.1-8B on 7 out of 9 benchmarks**, with Hermes-3-Llama-3.1-8B surpassing Llama-3.1-Storm-8B on the MuSR benchmark and both models showing comparable performance on the BBH benchmark.


## Llama-3.1-Storm-8B Model Strengths
Llama-3.1-Storm-8B is a powerful generalist model useful for diverse applications. We invite the AI community to explore [Llama-3.1-Storm-8B](https://huggingface.co./collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) and look forward to seeing how it will be utilized in various projects and applications.

<table>
  <tr>
   <td><strong>Model Strength</strong>
   </td>
   <td><strong>Relevant Benchmarks</strong>
   </td>
  <tr>
  <tr>
   <td>🎯 Improved Instruction Following
   </td>
   <td>IFEval Strict (+3.93%)
   </td>
  <tr>
  <tr>
   <td>🌐 Enhanced Knowledge Driven Question Answering
   </td>
   <td>GPQA (+7.21%), MMLU-Pro (+0.55%), AGIEval (+3.77%)
   </td>
  <tr>
  <tr>
   <td>🧠 Better Reasoning
   </td>
   <td>ARC-C (+3.92%), MuSR (+2.77%), BBH (+1.67%), AGIEval (+3.77%)
   </td>
  <tr>
  <tr>
   <td>πŸ€– Superior Agentic Capabilities
   </td>
   <td>BFCL: Overall Acc (+7.92%), BFCL: AST Summary (+12.32%)
   </td>
  <tr>
  <tr>
   <td>🚫 Reduced Hallucinations
   </td>
   <td>TruthfulQA (+9%)
   </td>
  <tr>
</table>

**Note**: All improvements are absolute gains over Meta-Llama-3.1-8B-Instruct.


## Llama-3.1-Storm-8B Models
1. `BF16`: [Llama-3.1-Storm-8B](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B)
2. ⚑ `FP8`: [Llama-3.1-Storm-8B-FP8-Dynamic](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic)
3. ⚑ `GGUF`: [Llama-3.1-Storm-8B-GGUF](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B-GGUF)
4. πŸš€ Ollama: `ollama run ajindal/llama3.1-storm:8b`

## πŸ’» How to Use GGUF Model

```bash
pip install llama-cpp-python
```

```python
from huggingface_hub import hf_hub_download
from llama_cpp import Llama

## Download the GGUF model
model_name = "akjindal53244/Llama-3.1-Storm-8B-GGUF"
model_file = "Llama-3.1-Storm-8B.Q8_0.gguf" # this is the specific model file we'll use in this example. It's a 4-bit quant, but other levels of quantization are available in the model repo if preferred
model_path = hf_hub_download(model_name, filename=model_file)

## Instantiate model from downloaded file
llm = Llama(
    model_path=model_path,
    n_ctx=16000,    # Context length to use
    n_threads=32,   # Number of CPU threads to use
    n_gpu_layers=0  # Number of model layers to offload to GPU
)

generation_kwargs = {
    "max_tokens":200,
    "stop":["<|eot_id|>"],
    "echo":False, # Echo the prompt in the output
    "top_k":1 # Set this value > 1 for sampling decoding
}

prompt = "What is 2+2?"
res = llm(prompt, **generation_kwargs)
print(res["choices"][0]["text"])
```

### Function Calling Example with [Ollama](https://ollama.com/)
```
import ollama
tools = [{
      'type': 'function',
      'function': {
        'name': 'get_current_weather',
        'description': 'Get the current weather for a city',
        'parameters': {
          'type': 'object',
          'properties': {
            'city': {
              'type': 'string',
              'description': 'The name of the city',
            },
          },
          'required': ['city'],
        },
      },
    },
    {
      'type': 'function',
      'function': {
        'name': 'get_places_to_vist',
        'description': 'Get places to visit in a city',
        'parameters': {
          'type': 'object',
          'properties': {
            'city': {
              'type': 'string',
              'description': 'The name of the city',
            },
          },
          'required': ['city'],
        },
      },
    },
  ]
response = ollama.chat(
    model='ajindal/llama3.1-storm:8b',
    messages=[
        {'role': 'system', 'content': 'Do not answer to nay vulgar questions.'},
        {'role': 'user', 'content': 'What is the weather in Toronto and San Francisco?'}
        ],
    tools=tools
)
print(response['message'])  # Expected Response: {'role': 'assistant', 'content': "<tool_call>{'tool_name': 'get_current_weather', 'tool_arguments': {'city': 'Toronto'}}</tool_call>"}
```


## Alignment Note
While **Llama-3.1-Storm-8B** did not undergo an explicit model alignment process, it may still retain some alignment properties inherited from the Meta-Llama-3.1-8B-Instruct model.

## Cite Our Work
```
@misc {ashvini_kumar_jindal_2024,
    author       = { {Ashvini Kumar Jindal, Pawan Kumar Rajpoot, Ankur Parikh, Akshita Sukhlecha} },
    title        = { Llama-3.1-Storm-8B },
    year         = 2024,
    url          = { https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B },
    doi          = { 10.57967/hf/2902 },
    publisher    = { Hugging Face }
}
```

## Support Our Work
With 3 team-members spanned across 3 different time-zones, we have won [NeurIPS LLM Efficiency Challenge 2023](https://llm-efficiency-challenge.github.io/) and 4 other competitions in Finance and Arabic LLM space. We have also published [SOTA mathematical reasoning model](https://huggingface.co./akjindal53244/Arithmo-Mistral-7B).

**Llama-3.1-Storm-8B** is our most valuable contribution so far towards the open-source community. We are committed in developing efficient generalist LLMs. **We're seeking both computational resources and innovative collaborators to drive this initiative forward.**