File size: 9,835 Bytes
0ff6652 44f9bb9 0ff6652 44f9bb9 0ff6652 44f9bb9 0ff6652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
tags:
- llama-3.1
- conversational
- instruction following
- reasoning
- function calling
license: llama3.1
base_model: akjindal53244/Llama-3.1-Storm-8B
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg)
Authors: [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Pawan Kumar Rajpoot](https://www.linkedin.com/in/pawanrajpoot/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Akshita Sukhlecha](https://www.linkedin.com/in/akshita-sukhlecha/)
**π€ Hugging Face Announcement Blog**: https://huggingface.co./blog/akjindal53244/llama31-storm8b
**πOllama:** `ollama run ajindal/llama3.1-storm:8b`
<br>
# Llama-3.1-Storm-8B-GGUF
**This is the GGUF quantized version of [Llama-3.1-Storm-8B](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B), for use with [llama.cpp](https://github.com/ggerganov/llama.cpp). BF16 Model [here](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B)**
## TL;DR
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/mDtDeiHwnBupw1k_n99Lf.png)
We present the [**Llama-3.1-Storm-8B**](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) model that outperforms Meta AI's [Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) and [Hermes-3-Llama-3.1-8B](https://huggingface.co./NousResearch/Hermes-3-Llama-3.1-8B) models significantly across diverse benchmarks as shown in the performance comparison plot in the next section. Our approach consists of three key steps:
1. **Self-Curation**: We applied two self-curation methods to select approximately 1 million high-quality examples from a pool of ~2.8 million open-source examples. **Our curation criteria focused on educational value and difficulty level, using the same SLM for annotation instead of larger models (e.g. 70B, 405B).**
2. **Targeted fine-tuning**: We performed [Spectrum](https://arxiv.org/abs/2406.06623)-based targeted fine-tuning over the Llama-3.1-8B-Instruct model. The Spectrum method accelerates training by selectively targeting layer modules based on their signal-to-noise ratio (SNR), and freezing the remaining modules. In our work, 50% of layers are frozen.
3. **Model Merging**: We merged our fine-tuned model with the [Llama-Spark](https://huggingface.co./arcee-ai/Llama-Spark) model using [SLERP](https://huggingface.co./blog/mlabonne/merge-models#1-slerp) method. The merging method produces a blended model with characteristics smoothly interpolated from both parent models, ensuring the resultant model captures the essence of both its parents. [Llama-3.1-Storm-8B](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) improves Llama-3.1-8B-Instruct across 10 diverse benchmarks. These benchmarks cover areas such as instruction-following, knowledge-driven QA, reasoning, truthful answer generation, and function calling.
## π Introducing Llama-3.1-Storm-8B
[**Llama-3.1-Storm-8B**](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) builds upon the foundation of Llama-3.1-8B-Instruct, aiming to enhance both conversational and function calling capabilities within the 8B parameter model class.
As shown in the left subplot of the above figure, [**Llama-3.1-Storm-8B**](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) model improves Meta-Llama-3.1-8B-Instruct across various benchmarks - Instruction-following ([IFEval](https://arxiv.org/abs/2311.07911)), Knowledge-driven QA benchmarks ([GPQA](https://arxiv.org/abs/2311.12022), [MMLU-Pro](https://arxiv.org/pdf/2406.01574)), Reasoning ([ARC-C](https://arxiv.org/abs/1803.05457), [MuSR](https://arxiv.org/abs/2310.16049), [BBH](https://arxiv.org/pdf/2210.09261)), Reduced Hallucinations ([TruthfulQA](https://arxiv.org/abs/2109.07958)), and Function-Calling ([BFCL](https://huggingface.co./datasets/gorilla-llm/Berkeley-Function-Calling-Leaderboard)). This improvement is particularly significant for AI developers and enthusiasts who work with limited computational resources.
We also benchmarked our model with the recently published model [Hermes-3-Llama-3.1-8B](https://huggingface.co./NousResearch/Hermes-3-Llama-3.1-8B) built on top of the Llama-3.1-8B-Instruct model. As shown in the right subplot of the above figure, **Llama-3.1-Storm-8B outperforms Hermes-3-Llama-3.1-8B on 7 out of 9 benchmarks**, with Hermes-3-Llama-3.1-8B surpassing Llama-3.1-Storm-8B on the MuSR benchmark and both models showing comparable performance on the BBH benchmark.
## Llama-3.1-Storm-8B Model Strengths
Llama-3.1-Storm-8B is a powerful generalist model useful for diverse applications. We invite the AI community to explore [Llama-3.1-Storm-8B](https://huggingface.co./collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) and look forward to seeing how it will be utilized in various projects and applications.
<table>
<tr>
<td><strong>Model Strength</strong>
</td>
<td><strong>Relevant Benchmarks</strong>
</td>
<tr>
<tr>
<td>π― Improved Instruction Following
</td>
<td>IFEval Strict (+3.93%)
</td>
<tr>
<tr>
<td>π Enhanced Knowledge Driven Question Answering
</td>
<td>GPQA (+7.21%), MMLU-Pro (+0.55%), AGIEval (+3.77%)
</td>
<tr>
<tr>
<td>π§ Better Reasoning
</td>
<td>ARC-C (+3.92%), MuSR (+2.77%), BBH (+1.67%), AGIEval (+3.77%)
</td>
<tr>
<tr>
<td>π€ Superior Agentic Capabilities
</td>
<td>BFCL: Overall Acc (+7.92%), BFCL: AST Summary (+12.32%)
</td>
<tr>
<tr>
<td>π« Reduced Hallucinations
</td>
<td>TruthfulQA (+9%)
</td>
<tr>
</table>
**Note**: All improvements are absolute gains over Meta-Llama-3.1-8B-Instruct.
## Llama-3.1-Storm-8B Models
1. `BF16`: [Llama-3.1-Storm-8B](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B)
2. β‘ `FP8`: [Llama-3.1-Storm-8B-FP8-Dynamic](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic)
3. β‘ `GGUF`: [Llama-3.1-Storm-8B-GGUF](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B-GGUF)
4. π Ollama: `ollama run ajindal/llama3.1-storm:8b`
## π» How to Use GGUF Model
```bash
pip install llama-cpp-python
```
```python
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
## Download the GGUF model
model_name = "akjindal53244/Llama-3.1-Storm-8B-GGUF"
model_file = "Llama-3.1-Storm-8B.Q8_0.gguf" # this is the specific model file we'll use in this example. It's a 4-bit quant, but other levels of quantization are available in the model repo if preferred
model_path = hf_hub_download(model_name, filename=model_file)
## Instantiate model from downloaded file
llm = Llama(
model_path=model_path,
n_ctx=16000, # Context length to use
n_threads=32, # Number of CPU threads to use
n_gpu_layers=0 # Number of model layers to offload to GPU
)
generation_kwargs = {
"max_tokens":200,
"stop":["<|eot_id|>"],
"echo":False, # Echo the prompt in the output
"top_k":1 # Set this value > 1 for sampling decoding
}
prompt = "What is 2+2?"
res = llm(prompt, **generation_kwargs)
print(res["choices"][0]["text"])
```
### Function Calling Example with [Ollama](https://ollama.com/)
```
import ollama
tools = [{
'type': 'function',
'function': {
'name': 'get_current_weather',
'description': 'Get the current weather for a city',
'parameters': {
'type': 'object',
'properties': {
'city': {
'type': 'string',
'description': 'The name of the city',
},
},
'required': ['city'],
},
},
},
{
'type': 'function',
'function': {
'name': 'get_places_to_vist',
'description': 'Get places to visit in a city',
'parameters': {
'type': 'object',
'properties': {
'city': {
'type': 'string',
'description': 'The name of the city',
},
},
'required': ['city'],
},
},
},
]
response = ollama.chat(
model='ajindal/llama3.1-storm:8b',
messages=[
{'role': 'system', 'content': 'Do not answer to nay vulgar questions.'},
{'role': 'user', 'content': 'What is the weather in Toronto and San Francisco?'}
],
tools=tools
)
print(response['message']) # Expected Response: {'role': 'assistant', 'content': "<tool_call>{'tool_name': 'get_current_weather', 'tool_arguments': {'city': 'Toronto'}}</tool_call>"}
```
## Alignment Note
While **Llama-3.1-Storm-8B** did not undergo an explicit model alignment process, it may still retain some alignment properties inherited from the Meta-Llama-3.1-8B-Instruct model.
## Cite Our Work
```
@misc {ashvini_kumar_jindal_2024,
author = { {Ashvini Kumar Jindal, Pawan Kumar Rajpoot, Ankur Parikh, Akshita Sukhlecha} },
title = { Llama-3.1-Storm-8B },
year = 2024,
url = { https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B },
doi = { 10.57967/hf/2902 },
publisher = { Hugging Face }
}
```
## Support Our Work
With 3 team-members spanned across 3 different time-zones, we have won [NeurIPS LLM Efficiency Challenge 2023](https://llm-efficiency-challenge.github.io/) and 4 other competitions in Finance and Arabic LLM space. We have also published [SOTA mathematical reasoning model](https://huggingface.co./akjindal53244/Arithmo-Mistral-7B).
**Llama-3.1-Storm-8B** is our most valuable contribution so far towards the open-source community. We are committed in developing efficient generalist LLMs. **We're seeking both computational resources and innovative collaborators to drive this initiative forward.** |