akdeniz27 commited on
Commit
65617c5
·
1 Parent(s): c2a2c69

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: tr
3
+ widget:
4
+ - text: "Almanya’nın Mainz kentinde Türk profesör Uğur Şahin ile eşi Özlem Türeci’nin kurduğu ve yönettiği biyoteknoloji şirketi BioNTech ile aşı sürecini sürdüren Pfizer’ın corona virüsü aşısı üretmeye başladığı belirtildi."
5
+ ---
6
+ # Turkish Named Entity Recognition (NER) Model
7
+ This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk)
8
+ using a reviewed version of well known Turkish NER dataset
9
+ (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
10
+
11
+ The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper.
12
+
13
+ # Fine-tuning parameters:
14
+ ```
15
+ task = "ner"
16
+ model_checkpoint = "dbmdz/bert-base-turkish-cased"
17
+ batch_size = 8
18
+ label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
19
+ max_length = 512
20
+ learning_rate = 2e-5
21
+ num_train_epochs = 3
22
+ weight_decay = 0.01
23
+ ```
24
+ # How to use:
25
+ ```
26
+ model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
27
+ tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner")
28
+ ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
29
+ NER("text")
30
+ # Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
31
+ ```
32
+ # Reference test results:
33
+ * accuracy: 0.9937648915431506
34
+ * f1: 0.9610945644080416
35
+ * precision: 0.9619899385131359
36
+ * recall: 0.9602008554956295