--- license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - generated_from_keras_callback model-index: - name: Segformer-MRIseg_Sep results: [] --- # Segformer-MRIseg_Sep This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co./nvidia/segformer-b0-finetuned-ade-512-512) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0026 - Validation Loss: 0.0116 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1563 | 0.0558 | 0 | | 0.0488 | 0.0706 | 1 | | 0.0290 | 0.0230 | 2 | | 0.0207 | 0.0160 | 3 | | 0.0164 | 0.0145 | 4 | | 0.0136 | 0.0133 | 5 | | 0.0117 | 0.0136 | 6 | | 0.0106 | 0.0144 | 7 | | 0.0104 | 0.0147 | 8 | | 0.0091 | 0.0109 | 9 | | 0.0078 | 0.0104 | 10 | | 0.0071 | 0.0108 | 11 | | 0.0067 | 0.0101 | 12 | | 0.0064 | 0.0110 | 13 | | 0.0058 | 0.0096 | 14 | | 0.0057 | 0.0101 | 15 | | 0.0055 | 0.0115 | 16 | | 0.0055 | 0.0109 | 17 | | 0.0051 | 0.0098 | 18 | | 0.0051 | 0.0108 | 19 | | 0.0048 | 0.0097 | 20 | | 0.0050 | 0.0097 | 21 | | 0.0047 | 0.0088 | 22 | | 0.0045 | 0.0110 | 23 | | 0.0043 | 0.0098 | 24 | | 0.0041 | 0.0098 | 25 | | 0.0041 | 0.0126 | 26 | | 0.0040 | 0.0125 | 27 | | 0.0042 | 0.0098 | 28 | | 0.0039 | 0.0109 | 29 | | 0.0037 | 0.0096 | 30 | | 0.0038 | 0.0104 | 31 | | 0.0036 | 0.0103 | 32 | | 0.0034 | 0.0100 | 33 | | 0.0033 | 0.0099 | 34 | | 0.0038 | 0.0100 | 35 | | 0.0036 | 0.0111 | 36 | | 0.0036 | 0.0158 | 37 | | 0.0034 | 0.0104 | 38 | | 0.0032 | 0.0100 | 39 | | 0.0030 | 0.0100 | 40 | | 0.0030 | 0.0099 | 41 | | 0.0029 | 0.0098 | 42 | | 0.0028 | 0.0112 | 43 | | 0.0030 | 0.0105 | 44 | | 0.0029 | 0.0104 | 45 | | 0.0029 | 0.0100 | 46 | | 0.0027 | 0.0119 | 47 | | 0.0030 | 0.0119 | 48 | | 0.0028 | 0.0109 | 49 | | 0.0029 | 0.0106 | 50 | | 0.0027 | 0.0111 | 51 | | 0.0027 | 0.0111 | 52 | | 0.0027 | 0.0132 | 53 | | 0.0029 | 0.0105 | 54 | | 0.0026 | 0.0113 | 55 | | 0.0027 | 0.0108 | 56 | | 0.0025 | 0.0112 | 57 | | 0.0025 | 0.0105 | 58 | | 0.0026 | 0.0116 | 59 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3