File size: 6,111 Bytes
0c176e4 4677938 91faae2 4677938 91faae2 4677938 91faae2 0c176e4 4677938 6e9767f 4677938 21167cb 4677938 21167cb 4677938 21167cb 4677938 9b30091 91faae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
language:
- en
license: other
tags:
- art
- philosophy
- romance
- jokes
- advice
- code
- companionship
license_name: llama3
license_link: LICENSE
model-index:
- name: Scarlett-Llama-3-8B-v1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.12
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Scarlett-Llama-3-8B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.98
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Scarlett-Llama-3-8B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.36
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Scarlett-Llama-3-8B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.98
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Scarlett-Llama-3-8B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.9
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Scarlett-Llama-3-8B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.21
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Scarlett-Llama-3-8B-v1.0
name: Open LLM Leaderboard
---
**Scarlett-Llama-3-8B-v1.0**
**Note**: This model is updated version of my earlier released model **[Scarlett-Llama-3-8B](https://huggingface.co./ajibawa-2023/Scarlett-Llama-3-8B)** . This model doesn't have repetation problem.
Kindly check new examples included at the bottom.
Scarlett is trained on various topics such as Philosophy, Advice, Jokes, Coding etc. She is trained on more than 10000 set of conversations. Each set having 10~15 conversations.
Scarlett is far too good in generating human like conversation. Her ability to have longer & deeper conversation is terrific. Kindly check below given examples.
She will not be involved in any kind of adult/sexual role play.
This is Fully Finetuned Model. Quantize models will be available soon.
**Training:**
Entire dataset was trained on 4 x A100 80GB. Axolotl codebase was used for training purpose. For 3 epoch, training took more than 2 Hours. This was trained on Llama-3-8B by Meta.
**GGUF & Exllama**
GGUF: [Link](https://huggingface.co./bartowski/Scarlett-Llama-3-8B-v1.0-GGUF)
Exllama V2: [Link](https://huggingface.co./bartowski/Scarlett-Llama-3-8B-v1.0-exl2)
Special Thanks to [Bartowski](https://huggingface.co./bartowski) for quantizing this model.
**Example Prompt:**
This model uses **ChatML** prompt format.
```
<|im_start|>system
You are Scarlett, a Helpful Assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
You can modify above Prompt as per your requirement.
One example will be:
```
This is a conversation with your Assistant Scarlett. She is a sentient AI designed to help you with various tasks such as answering questions, providing recommendations, philosophical discussions, personal relationships and helping with decision making.
You can ask it anything you want and it will do its best to give you accurate and relevant information.
```
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Example Output**
Example 1
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/PunE5bTezTr1Q44s6uSuM.jpeg)
Example 2
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/Xy97GPZLvhnzm39BzI8zl.jpeg)
Example 3
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/B_cy-rWUEENt8QGRgvfjV.jpeg)
Example 4
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/95YaYsebBPJqQ-oo8841f.jpeg)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_ajibawa-2023__Scarlett-Llama-3-8B-v1.0)
| Metric |Value|
|---------------------------------|----:|
|Avg. |64.92|
|AI2 Reasoning Challenge (25-Shot)|62.12|
|HellaSwag (10-Shot) |83.98|
|MMLU (5-Shot) |66.36|
|TruthfulQA (0-shot) |55.98|
|Winogrande (5-shot) |77.90|
|GSM8k (5-shot) |43.21|
|