aisuko commited on
Commit
457f154
·
verified ·
1 Parent(s): e26bdc4

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:1K<n<10K
10
+ - loss:MultipleNegativesRankingLoss
11
+ - loss:CoSENTLoss
12
+ base_model: google-bert/bert-base-uncased
13
+ widget:
14
+ - source_sentence: A sleeping man.
15
+ sentences:
16
+ - A man is sleeping.
17
+ - The child is dancing inside.
18
+ - A women in black drinks.
19
+ - source_sentence: the guy is dead
20
+ sentences:
21
+ - There is a man on the ground.
22
+ - The man is playing a guitar.
23
+ - A women in black drinks.
24
+ - source_sentence: There is a party
25
+ sentences:
26
+ - People gather for an event.
27
+ - The woman's hands are empty.
28
+ - The dog is in the water.
29
+ - source_sentence: Women are running.
30
+ sentences:
31
+ - Two women are running.
32
+ - A small dog is laying on a bed.
33
+ - A small boy laying on a sofa with a dog.
34
+ - source_sentence: A plane in the sky.
35
+ sentences:
36
+ - Two airplanes in the sky.
37
+ - A man is erasing a chalk board.
38
+ - A small boy laying on a sofa with a dog.
39
+ pipeline_tag: sentence-similarity
40
+ ---
41
+
42
+ # SentenceTransformer based on google-bert/bert-base-uncased
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) and [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Output Dimensionality:** 768 tokens
53
+ - **Similarity Function:** Cosine Similarity
54
+ - **Training Datasets:**
55
+ - [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli)
56
+ - [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
57
+ - **Language:** en
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
63
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
64
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
65
+
66
+ ### Full Model Architecture
67
+
68
+ ```
69
+ SentenceTransformer(
70
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
71
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("aisuko/ft-with-st")
91
+ # Run inference
92
+ sentences = [
93
+ 'A plane in the sky.',
94
+ 'Two airplanes in the sky.',
95
+ 'A man is erasing a chalk board.',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 768]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Datasets
146
+
147
+ #### all-nli-triplet
148
+
149
+ * Dataset: [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
150
+ * Size: 500 training samples
151
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
152
+ * Approximate statistics based on the first 1000 samples:
153
+ | | anchor | positive | negative |
154
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
155
+ | type | string | string | string |
156
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.26 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.64 tokens</li><li>max: 30 tokens</li></ul> |
157
+ * Samples:
158
+ | anchor | positive | negative |
159
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
160
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
161
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
162
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
163
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
164
+ ```json
165
+ {
166
+ "scale": 20.0,
167
+ "similarity_fct": "cos_sim"
168
+ }
169
+ ```
170
+
171
+ #### stsb
172
+
173
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
174
+ * Size: 500 training samples
175
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
176
+ * Approximate statistics based on the first 1000 samples:
177
+ | | sentence1 | sentence2 | score |
178
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
179
+ | type | string | string | float |
180
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.94 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 9.88 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
181
+ * Samples:
182
+ | sentence1 | sentence2 | score |
183
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
184
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
185
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
186
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
187
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
188
+ ```json
189
+ {
190
+ "scale": 20.0,
191
+ "similarity_fct": "pairwise_cos_sim"
192
+ }
193
+ ```
194
+
195
+ ### Evaluation Datasets
196
+
197
+ #### all-nli-triplet
198
+
199
+ * Dataset: [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
200
+ * Size: 400 evaluation samples
201
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
202
+ * Approximate statistics based on the first 1000 samples:
203
+ | | anchor | positive | negative |
204
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
205
+ | type | string | string | string |
206
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.93 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.78 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.45 tokens</li><li>max: 29 tokens</li></ul> |
207
+ * Samples:
208
+ | anchor | positive | negative |
209
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
210
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
211
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
212
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
213
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
214
+ ```json
215
+ {
216
+ "scale": 20.0,
217
+ "similarity_fct": "cos_sim"
218
+ }
219
+ ```
220
+
221
+ #### stsb
222
+
223
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
224
+ * Size: 400 evaluation samples
225
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
226
+ * Approximate statistics based on the first 1000 samples:
227
+ | | sentence1 | sentence2 | score |
228
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
229
+ | type | string | string | float |
230
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.9 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.95 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
231
+ * Samples:
232
+ | sentence1 | sentence2 | score |
233
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
234
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
235
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
236
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
237
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
238
+ ```json
239
+ {
240
+ "scale": 20.0,
241
+ "similarity_fct": "pairwise_cos_sim"
242
+ }
243
+ ```
244
+
245
+ ### Training Hyperparameters
246
+ #### Non-Default Hyperparameters
247
+
248
+ - `eval_strategy`: steps
249
+ - `per_device_train_batch_size`: 16
250
+ - `per_device_eval_batch_size`: 16
251
+ - `num_train_epochs`: 1
252
+ - `warmup_ratio`: 0.1
253
+ - `fp16`: True
254
+ - `batch_sampler`: no_duplicates
255
+
256
+ #### All Hyperparameters
257
+ <details><summary>Click to expand</summary>
258
+
259
+ - `overwrite_output_dir`: False
260
+ - `do_predict`: False
261
+ - `eval_strategy`: steps
262
+ - `prediction_loss_only`: True
263
+ - `per_device_train_batch_size`: 16
264
+ - `per_device_eval_batch_size`: 16
265
+ - `per_gpu_train_batch_size`: None
266
+ - `per_gpu_eval_batch_size`: None
267
+ - `gradient_accumulation_steps`: 1
268
+ - `eval_accumulation_steps`: None
269
+ - `learning_rate`: 5e-05
270
+ - `weight_decay`: 0.0
271
+ - `adam_beta1`: 0.9
272
+ - `adam_beta2`: 0.999
273
+ - `adam_epsilon`: 1e-08
274
+ - `max_grad_norm`: 1.0
275
+ - `num_train_epochs`: 1
276
+ - `max_steps`: -1
277
+ - `lr_scheduler_type`: linear
278
+ - `lr_scheduler_kwargs`: {}
279
+ - `warmup_ratio`: 0.1
280
+ - `warmup_steps`: 0
281
+ - `log_level`: passive
282
+ - `log_level_replica`: warning
283
+ - `log_on_each_node`: True
284
+ - `logging_nan_inf_filter`: True
285
+ - `save_safetensors`: True
286
+ - `save_on_each_node`: False
287
+ - `save_only_model`: False
288
+ - `restore_callback_states_from_checkpoint`: False
289
+ - `no_cuda`: False
290
+ - `use_cpu`: False
291
+ - `use_mps_device`: False
292
+ - `seed`: 42
293
+ - `data_seed`: None
294
+ - `jit_mode_eval`: False
295
+ - `use_ipex`: False
296
+ - `bf16`: False
297
+ - `fp16`: True
298
+ - `fp16_opt_level`: O1
299
+ - `half_precision_backend`: auto
300
+ - `bf16_full_eval`: False
301
+ - `fp16_full_eval`: False
302
+ - `tf32`: None
303
+ - `local_rank`: 0
304
+ - `ddp_backend`: None
305
+ - `tpu_num_cores`: None
306
+ - `tpu_metrics_debug`: False
307
+ - `debug`: []
308
+ - `dataloader_drop_last`: False
309
+ - `dataloader_num_workers`: 0
310
+ - `dataloader_prefetch_factor`: None
311
+ - `past_index`: -1
312
+ - `disable_tqdm`: False
313
+ - `remove_unused_columns`: True
314
+ - `label_names`: None
315
+ - `load_best_model_at_end`: False
316
+ - `ignore_data_skip`: False
317
+ - `fsdp`: []
318
+ - `fsdp_min_num_params`: 0
319
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
320
+ - `fsdp_transformer_layer_cls_to_wrap`: None
321
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
322
+ - `deepspeed`: None
323
+ - `label_smoothing_factor`: 0.0
324
+ - `optim`: adamw_torch
325
+ - `optim_args`: None
326
+ - `adafactor`: False
327
+ - `group_by_length`: False
328
+ - `length_column_name`: length
329
+ - `ddp_find_unused_parameters`: None
330
+ - `ddp_bucket_cap_mb`: None
331
+ - `ddp_broadcast_buffers`: False
332
+ - `dataloader_pin_memory`: True
333
+ - `dataloader_persistent_workers`: False
334
+ - `skip_memory_metrics`: True
335
+ - `use_legacy_prediction_loop`: False
336
+ - `push_to_hub`: False
337
+ - `resume_from_checkpoint`: None
338
+ - `hub_model_id`: None
339
+ - `hub_strategy`: every_save
340
+ - `hub_private_repo`: False
341
+ - `hub_always_push`: False
342
+ - `gradient_checkpointing`: False
343
+ - `gradient_checkpointing_kwargs`: None
344
+ - `include_inputs_for_metrics`: False
345
+ - `eval_do_concat_batches`: True
346
+ - `fp16_backend`: auto
347
+ - `push_to_hub_model_id`: None
348
+ - `push_to_hub_organization`: None
349
+ - `mp_parameters`:
350
+ - `auto_find_batch_size`: False
351
+ - `full_determinism`: False
352
+ - `torchdynamo`: None
353
+ - `ray_scope`: last
354
+ - `ddp_timeout`: 1800
355
+ - `torch_compile`: False
356
+ - `torch_compile_backend`: None
357
+ - `torch_compile_mode`: None
358
+ - `dispatch_batches`: None
359
+ - `split_batches`: None
360
+ - `include_tokens_per_second`: False
361
+ - `include_num_input_tokens_seen`: False
362
+ - `neftune_noise_alpha`: None
363
+ - `optim_target_modules`: None
364
+ - `batch_eval_metrics`: False
365
+ - `batch_sampler`: no_duplicates
366
+ - `multi_dataset_batch_sampler`: proportional
367
+
368
+ </details>
369
+
370
+ ### Framework Versions
371
+ - Python: 3.10.13
372
+ - Sentence Transformers: 3.0.0
373
+ - Transformers: 4.41.1
374
+ - PyTorch: 2.1.2
375
+ - Accelerate: 0.30.1
376
+ - Datasets: 2.19.1
377
+ - Tokenizers: 0.19.1
378
+
379
+ ## Citation
380
+
381
+ ### BibTeX
382
+
383
+ #### Sentence Transformers
384
+ ```bibtex
385
+ @inproceedings{reimers-2019-sentence-bert,
386
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
387
+ author = "Reimers, Nils and Gurevych, Iryna",
388
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
389
+ month = "11",
390
+ year = "2019",
391
+ publisher = "Association for Computational Linguistics",
392
+ url = "https://arxiv.org/abs/1908.10084",
393
+ }
394
+ ```
395
+
396
+ #### MultipleNegativesRankingLoss
397
+ ```bibtex
398
+ @misc{henderson2017efficient,
399
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
400
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
401
+ year={2017},
402
+ eprint={1705.00652},
403
+ archivePrefix={arXiv},
404
+ primaryClass={cs.CL}
405
+ }
406
+ ```
407
+
408
+ #### CoSENTLoss
409
+ ```bibtex
410
+ @online{kexuefm-8847,
411
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
412
+ author={Su Jianlin},
413
+ year={2022},
414
+ month={Jan},
415
+ url={https://kexue.fm/archives/8847},
416
+ }
417
+ ```
418
+
419
+ <!--
420
+ ## Glossary
421
+
422
+ *Clearly define terms in order to be accessible across audiences.*
423
+ -->
424
+
425
+ <!--
426
+ ## Model Card Authors
427
+
428
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
429
+ -->
430
+
431
+ <!--
432
+ ## Model Card Contact
433
+
434
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
435
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58fdb647a16ab2608d7528869cec3031dd9709ff08703c75ae3c9bfdf9a62328
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff